gev.pll | R Documentation |
This function calculates the profile likelihood along with two small-sample corrections based on Severini's (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.
gev.pll(
psi,
param = c("loc", "scale", "shape", "quant", "Nmean", "Nquant"),
mod = "profile",
dat,
N = NULL,
p = NULL,
q = NULL,
correction = TRUE,
plot = TRUE,
...
)
psi |
parameter vector over which to profile (unidimensional) |
param |
string indicating the parameter to profile over |
mod |
string indicating the model, one of |
dat |
sample vector |
N |
size of block over which to take maxima. Required only for |
p |
tail probability. Required only for |
q |
probability level of quantile. Required only for |
correction |
logical indicating whether to use |
plot |
logical; should the profile likelihood be displayed? Default to |
... |
additional arguments such as output from call to |
The two additional mod
available are tem
, the tangent exponential model (TEM) approximation and
modif
for the penalized profile likelihood based on p^*
approximation proposed by Severini.
For the latter, the penalization is based on the TEM or an empirical covariance adjustment term.
a list with components
mle
: maximum likelihood estimate
psi.max
: maximum profile likelihood estimate
param
: string indicating the parameter to profile over
std.error
: standard error of psi.max
psi
: vector of parameter \psi
given in psi
pll
: values of the profile log likelihood at psi
maxpll
: value of maximum profile log likelihood
In addition, if mod
includes tem
normal
: maximum likelihood estimate and standard error of the interest parameter \psi
r
: values of likelihood root corresponding to \psi
q
: vector of likelihood modifications
rstar
: modified likelihood root vector
rstar.old
: uncorrected modified likelihood root vector
tem.psimax
: maximum of the tangent exponential model likelihood
In addition, if mod
includes modif
tem.mle
: maximum of tangent exponential modified profile log likelihood
tem.profll
: values of the modified profile log likelihood at psi
tem.maxpll
: value of maximum modified profile log likelihood
empcov.mle
: maximum of Severini's empirical covariance modified profile log likelihood
empcov.profll
: values of the modified profile log likelihood at psi
empcov.maxpll
: value of maximum modified profile log likelihood
Fraser, D. A. S., Reid, N. and Wu, J. (1999), A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86(2), 249–264.
Severini, T. (2000) Likelihood Methods in Statistics. Oxford University Press. ISBN 9780198506508.
Brazzale, A. R., Davison, A. C. and Reid, N. (2007) Applied asymptotics: case studies in small-sample statistics. Cambridge University Press, Cambridge. ISBN 978-0-521-84703-2
## Not run:
set.seed(123)
dat <- rgev(n = 100, loc = 0, scale = 2, shape = 0.3)
gev.pll(psi = seq(0,0.5, length = 50), param = 'shape', dat = dat)
gev.pll(psi = seq(-1.5, 1.5, length = 50), param = 'loc', dat = dat)
gev.pll(psi = seq(10, 40, length = 50), param = 'quant', dat = dat, p = 0.01)
gev.pll(psi = seq(12, 100, length = 50), param = 'Nmean', N = 100, dat = dat)
gev.pll(psi = seq(12, 90, length = 50), param = 'Nquant', N = 100, dat = dat, q = 0.5)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.