gevN | R Documentation |
Likelihood, score function and information matrix,
approximate ancillary statistics and sample space derivative
for the generalized extreme value distribution parametrized in terms of the
quantiles/mean of N-block maxima parametrization z
, scale and shape.
par |
vector of |
dat |
sample vector |
V |
vector calculated by |
q |
probability, corresponding to |
qty |
string indicating whether to calculate the |
gevN.ll(par, dat, N, q, qty = c('mean', 'quantile')) gevN.ll.optim(par, dat, N, q = 0.5, qty = c('mean', 'quantile')) gevN.score(par, dat, N, q = 0.5, qty = c('mean', 'quantile')) gevN.infomat(par, dat, qty = c('mean', 'quantile'), method = c('obs', 'exp'), N, q = 0.5, nobs = length(dat)) gevN.Vfun(par, dat, N, q = 0.5, qty = c('mean', 'quantile')) gevN.phi(par, dat, N, q = 0.5, qty = c('mean', 'quantile'), V) gevN.dphi(par, dat, N, q = 0.5, qty = c('mean', 'quantile'), V)
gevN.ll
: log likelihood
gevN.score
: score vector
gevN.infomat
: expected and observed information matrix
gevN.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM
gevN.phi
: canonical parameter in the local exponential family approximation
gevN.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Leo Belzile
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.