gevr | R Documentation |
Likelihood, score function and information matrix,
approximate ancillary statistics and sample space derivative
for the generalized extreme value distribution parametrized in terms of the return level z
, scale and shape.
par |
vector of |
dat |
sample vector |
p |
tail probability, corresponding to |
method |
string indicating whether to use the expected ( |
nobs |
number of observations |
V |
vector calculated by |
gevr.ll(par, dat, p) gevr.ll.optim(par, dat, p) gevr.score(par, dat, p) gevr.infomat(par, dat, p, method = c('obs', 'exp'), nobs = length(dat)) gevr.Vfun(par, dat, p) gevr.phi(par, dat, p, V) gevr.dphi(par, dat, p, V)
gevr.ll
: log likelihood
gevr.ll.optim
: negative log likelihood parametrized in terms of return levels, log(scale)
and shape in order to perform unconstrained optimization
gevr.score
: score vector
gevr.infomat
: observed information matrix
gevr.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEM
gevr.phi
: canonical parameter in the local exponential family approximation
gevr.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
Leo Belzile
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.