pp | R Documentation |
Likelihood, score function and information matrix for the Poisson process likelihood.
par |
vector of |
dat |
sample vector |
u |
threshold |
method |
string indicating whether to use the expected ( |
np |
number of periods of observations. This is a post hoc adjustment for the intensity so that the parameters of the model coincide with those of a generalized extreme value distribution with block size |
nobs |
number of observations for the expected information matrix. Default to |
pp.ll(par, dat) pp.ll(par, dat, u, np) pp.score(par, dat) pp.infomat(par, dat, method = c('obs', 'exp'))
pp.ll
: log likelihood
pp.score
: score vector
pp.infomat
: observed or expected information matrix
Leo Belzile
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Wadsworth, J.L. (2016). Exploiting Structure of Maximum Likelihood Estimators for Extreme Value Threshold Selection, Technometrics, 58(1), 116-126, http://dx.doi.org/10.1080/00401706.2014.998345
.
Sharkey, P. and J.A. Tawn (2017). A Poisson process reparameterisation for Bayesian inference for extremes, Extremes, 20(2), 239-263, http://dx.doi.org/10.1007/s10687-016-0280-2
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.