Description Usage Arguments Details Value References See Also Examples
Clustering measures extract information about validation index.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
... |
Further arguments passed to the summarization functions. |
x |
A data.frame contained only the input attributes. |
y |
A factor response vector with one label for each row/component of x. |
features |
A list of features names or |
summary |
A list of summarization functions or empty for all values. See
post.processing method to more information. (Default:
|
transform |
A logical value indicating if the categorical attributes
should be transformed. If |
formula |
A formula to define the class column. |
data |
A data.frame dataset contained the input attributes and class. The details section describes the valid values for this group. |
The following features are allowed for this method:
Calculate the Dunn Index.
Calculate the Davies and Bouldin Index.
Calculate the INT index.
Calculate the mean silhouette value from data.
Pearson Correlation between class matching and instance distances.
Calinski and Harabaz index.
Normalized relative entropy.
Mean of the number of examples per class.
A list named by the requested meta-features.
Bruno A. Pimentel, and Andre C. P. L. F. de Carvalho. A new data characterization for selecting clustering algorithms using meta-learning. Information Sciences, volume 477, pages 203 - 219, 2019.
Other meta-features:
complexity()
,
concept()
,
general()
,
infotheo()
,
itemset()
,
landmarking()
,
model.based()
,
relative()
,
statistical()
1 2 3 4 5 6 7 8 | ## Extract all meta-features using formula
clustering(Species ~ ., iris)
## Extract some meta-features
clustering(iris[1:4], iris[5], c("vdu", "vdb", "sil"))
## Use another summarization function
clustering(Species ~ ., iris, summary=c("min", "median", "max"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.