Description Usage Arguments Details Value References See Also Examples
Statistical meta-features are the standard statistical measures to describe the numerical properties of a distribution of data. As it requires only numerical attributes, the categorical data are transformed to numerical.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 
| ... | Further arguments passed to the summarization functions. | 
| x | A data.frame contained only the input attributes. | 
| y | A factor response vector with one label for each row/component of x. | 
| features | A list of features names or  | 
| summary | A list of summarization functions or empty for all values. See
post.processing method to more information. (Default: 
 | 
| by.class | A logical value indicating if the meta-features must be computed for each group of samples belonging to different output classes. (Default: FALSE) | 
| transform | A logical value indicating if the categorical attributes
should be transformed. If  | 
| formula | A formula to define the class column. | 
| data | A data.frame dataset contained the input attributes and class The details section describes the valid values for this group. | 
The following features are allowed for this method:
Canonical correlations between the predictive attributes and the class (multi-valued).
Center of gravity, which is the distance between the instance in the center of the majority class and the instance-center of the minority class.
Absolute attributes correlation, which measure the 
correlation between each pair of the numeric attributes in the dataset 
(multi-valued). This measure accepts an extra argument called 
method = c("pearson", "kendall", "spearman"). See 
cor for more details.
Absolute attributes covariance, which measure the covariance between each pair of the numeric attributes in the dataset (multi-valued).
Number of the discriminant functions.
Eigenvalues of the covariance matrix (multi-valued).
Geometric mean of attributes (multi-valued).
Harmonic mean of attributes (multi-valued).
Interquartile range of attributes (multi-valued).
Kurtosis of attributes (multi-valued).
Median absolute deviation of attributes (multi-valued).
Maximum value of attributes (multi-valued).
Mean value of attributes (multi-valued).
Median value of attributes (multi-valued).
Minimum value of attributes (multi-valued).
Number of attributes pairs with high correlation 
(multi-valued when by.class=TRUE).
Number of attributes with normal distribution. The 
Shapiro-Wilk Normality Test is used to assess if an attribute is or not is
normally distributed (multi-valued only when by.class=TRUE).
Number of attributes with outliers values. The 
Turkey's boxplot algorithm is used to compute if an attributes has or does 
not have outliers (multi-valued only when by.class=TRUE).
Range of Attributes (multi-valued).
Standard deviation of the attributes (multi-valued).
Statistic test for homogeneity of covariances.
Skewness of attributes (multi-valued).
Attributes sparsity, which represents the degree of discreetness of each attribute in the dataset (multi-valued).
Trimmed mean of attributes (multi-valued). It is the arithmetic mean excluding the 20% of the lowest and highest instances.
Attributes variance (multi-valued).
Wilks Lambda.
This method uses simple binarization to transform the categorical attributes
when transform=TRUE.
A list named by the requested meta-features.
Ciro Castiello, Giovanna Castellano, and Anna M. Fanelli. Meta-data: Characterization of input features for meta-learning. In 2nd International Conference on Modeling Decisions for Artificial Intelligence (MDAI), pages 457 - 468, 2005.
Shawkat Ali, and Kate A. Smith. On learning algorithm selection for classification. Applied Soft Computing, volume 6, pages 119 - 138, 2006.
Other meta-features: 
clustering(),
complexity(),
concept(),
general(),
infotheo(),
itemset(),
landmarking(),
model.based(),
relative()
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## Extract all meta-features
statistical(Species ~ ., iris)
## Extract some meta-features
statistical(iris[1:4], iris[5], c("cor", "nrNorm"))
## Extract all meta-features without summarize the results
statistical(Species ~ ., iris, summary=c())
## Use another summarization function
statistical(Species ~ ., iris, summary=c("min", "median", "max"))
## Extract statistical measures using by.class approach
statistical(Species ~ ., iris, by.class=TRUE)
## Do not transform the data (using only categorical attributes)
statistical(Species ~ ., iris, transform=FALSE)
 | 
$canCor
     mean        sd 
0.7280090 0.3631869 
$gravity
[1] 3.208281
$cor
     mean        sd 
0.5941160 0.3375443 
$cov
     mean        sd 
0.5966542 0.5582672 
$nrDisc
[1] 2
$eigenvalues
    mean       sd 
1.143239 2.058771 
$gMean
    mean       sd 
3.223073 2.022943 
$hMean
    mean       sd 
2.978389 2.145948 
$iqRange
    mean       sd 
1.700000 1.275408 
$kurtosis
      mean         sd 
-0.8105361  0.7326910 
$mad
     mean        sd 
1.0934175 0.5785782 
$max
    mean       sd 
5.425000 2.443188 
$mean
    mean       sd 
3.464500 1.918485 
$median
    mean       sd 
3.612500 1.919364 
$min
    mean       sd 
1.850000 1.808314 
$nrCorAttr
[1] 0.5
$nrNorm
[1] 1
$nrOutliers
[1] 1
$range
 mean    sd 
3.575 1.650 
$sd
     mean        sd 
0.9478671 0.5712994 
$sdRatio
[1] 1.277229
$skewness
      mean         sd 
0.06273198 0.29439896 
$sparsity
      mean         sd 
0.02871478 0.01103236 
$tMean
    mean       sd 
3.470556 1.904802 
$var
    mean       sd 
1.143239 1.332546 
$wLambda
[1] 0.02343863
$cor
     mean        sd 
0.5941160 0.3375443 
$nrNorm
[1] 1
$canCor
non.aggregated1 non.aggregated2 
      0.9848209       0.4711970 
$gravity
[1] 3.208281
$cor
non.aggregated1 non.aggregated2 non.aggregated3 non.aggregated4 non.aggregated5 
      0.1175698       0.8717538       0.4284401       0.8179411       0.3661259 
non.aggregated6 
      0.9628654 
$cov
non.aggregated1 non.aggregated2 non.aggregated3 non.aggregated4 non.aggregated5 
      0.0424340       1.2743154       0.3296564       0.5162707       0.1216394 
non.aggregated6 
      1.2956094 
$nrDisc
[1] 2
$eigenvalues
non.aggregated1 non.aggregated2 non.aggregated3 non.aggregated4 
     4.22824171      0.24267075      0.07820950      0.02383509 
$gMean
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                  5.7857204                   3.0265978 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                  3.2382668                   0.8417075 
$hMean
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                  5.7289051                   2.9958151 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                  2.6941655                   0.4946708 
$iqRange
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                        1.3                         0.5 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                        3.5                         1.5 
$kurtosis
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                 -0.6058125                   0.1387047 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                 -1.4168574                  -1.3581792 
$mad
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                    1.03782                     0.44478 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                    1.85325                     1.03782 
$max
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                        7.9                         4.4 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                        6.9                         2.5 
$mean
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                   5.843333                    3.057333 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                   3.758000                    1.199333 
$median
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                       5.80                        3.00 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                       4.35                        1.30 
$min
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                        4.3                         2.0 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                        1.0                         0.1 
$nrCorAttr
[1] 0.5
$nrNorm
[1] 1
$nrOutliers
[1] 1
$range
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                        3.6                         2.4 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                        5.9                         2.4 
$sd
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                  0.8280661                   0.4358663 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                  1.7652982                   0.7622377 
$sdRatio
[1] 1.277229
$skewness
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                  0.3086407                   0.3126147 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                 -0.2694109                  -0.1009166 
$sparsity
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                 0.02205177                  0.03705865 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                 0.01670048                  0.03904820 
$tMean
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                   5.797778                    3.040000 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                   3.842222                    1.202222 
$var
non.aggregated.Sepal.Length  non.aggregated.Sepal.Width 
                  0.6856935                   0.1899794 
non.aggregated.Petal.Length  non.aggregated.Petal.Width 
                  3.1162779                   0.5810063 
$wLambda
[1] 0.02343863
$canCor
      min    median       max 
0.4711970 0.7280090 0.9848209 
$gravity
[1] 3.208281
$cor
      min    median       max 
0.1175698 0.6231906 0.9628654 
$cov
      min    median       max 
0.0424340 0.4229635 1.2956094 
$nrDisc
[1] 2
$eigenvalues
       min     median        max 
0.02383509 0.16044012 4.22824171 
$gMean
      min    median       max 
0.8417075 3.1324323 5.7857204 
$hMean
      min    median       max 
0.4946708 2.8449903 5.7289051 
$iqRange
   min median    max 
   0.5    1.4    3.5 
$kurtosis
       min     median        max 
-1.4168574 -0.9819959  0.1387047 
$mad
    min  median     max 
0.44478 1.03782 1.85325 
$max
   min median    max 
  2.50   5.65   7.90 
$mean
     min   median      max 
1.199333 3.407667 5.843333 
$median
   min median    max 
 1.300  3.675  5.800 
$min
   min median    max 
   0.1    1.5    4.3 
$nrCorAttr
[1] 0.5
$nrNorm
[1] 1
$nrOutliers
[1] 1
$range
   min median    max 
   2.4    3.0    5.9 
$sd
      min    median       max 
0.4358663 0.7951519 1.7652982 
$sdRatio
[1] 1.277229
$skewness
       min     median        max 
-0.2694109  0.1038621  0.3126147 
$sparsity
       min     median        max 
0.01670048 0.02955521 0.03904820 
$tMean
     min   median      max 
1.202222 3.441111 5.797778 
$var
      min    median       max 
0.1899794 0.6333499 3.1162779 
$wLambda
[1] 0.02343863
$canCor
     mean        sd 
0.7280090 0.3631869 
$gravity
[1] 3.208281
$cor
     mean        sd 
0.4850530 0.2124471 
$cov
      mean         sd 
0.07154263 0.07234487 
$nrDisc
[1] 2
$eigenvalues
     mean        sd 
0.1518663 0.2187384 
$gMean
    mean       sd 
3.444764 2.018251 
$hMean
    mean       sd 
3.424851 2.014514 
$iqRange
     mean        sd 
0.4625000 0.2071177 
$kurtosis
       mean          sd 
-0.07541906  0.64345348 
$mad
     mean        sd 
0.3521175 0.1925954 
$max
    mean       sd 
4.258333 2.333339 
$mean
    mean       sd 
3.464500 2.021852 
$median
    mean       sd 
3.458333 2.014587 
$min
    mean       sd 
2.633333 1.669150 
$nrCorAttr
     mean        sd 
0.5000000 0.4409586 
$nrNorm
     mean        sd 
2.6666667 0.5773503 
$nrOutliers
mean   sd 
   2    1 
$range
     mean        sd 
1.6250000 0.7374711 
$sd
     mean        sd 
0.3577631 0.1613754 
$sdRatio
[1] 1.277229
$skewness
     mean        sd 
0.1199744 0.4378457 
$sparsity
      mean         sd 
0.06017094 0.03608774 
$tMean
    mean       sd 
3.455833 2.011284 
$var
     mean        sd 
0.1518663 0.1221409 
$wLambda
[1] 0.02343863
$canCor
     mean        sd 
0.7280090 0.3631869 
$gravity
[1] 3.208281
$cor
     mean        sd 
0.5941160 0.3375443 
$cov
     mean        sd 
0.5966542 0.5582672 
$nrDisc
[1] 2
$eigenvalues
    mean       sd 
1.143239 2.058771 
$gMean
    mean       sd 
3.223073 2.022943 
$hMean
    mean       sd 
2.978389 2.145948 
$iqRange
    mean       sd 
1.700000 1.275408 
$kurtosis
      mean         sd 
-0.8105361  0.7326910 
$mad
     mean        sd 
1.0934175 0.5785782 
$max
    mean       sd 
5.425000 2.443188 
$mean
    mean       sd 
3.464500 1.918485 
$median
    mean       sd 
3.612500 1.919364 
$min
    mean       sd 
1.850000 1.808314 
$nrCorAttr
[1] 0.5
$nrNorm
[1] 1
$nrOutliers
[1] 1
$range
 mean    sd 
3.575 1.650 
$sd
     mean        sd 
0.9478671 0.5712994 
$sdRatio
[1] 1.277229
$skewness
      mean         sd 
0.06273198 0.29439896 
$sparsity
      mean         sd 
0.02871478 0.01103236 
$tMean
    mean       sd 
3.470556 1.904802 
$var
    mean       sd 
1.143239 1.332546 
$wLambda
[1] 0.02343863
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.