View source: R/mfpp.R View source: R/maxscore_PEM.r

maxscore_PEM | R Documentation |

Calculate maximal score value (PMAX) of possible project scenarios.

```
maxscore_PEM(PEM, P=PEM, Q=1-PEM)
```

`PEM` |
N by N upper triangular adjacency matrix of logic network (a numeric matrix). |

`P` |
N by N score matrix of task/dependency inclusion (a numeric matrix). The default P matrix is P=PEM |

`Q` |
N by N score matrix of task/dependency exclusion (a numeric matrix). The default Q matrix is Q=1-PEM |

`score` |
The maximal score value of the project scenario (a scalar). |

Zsolt T. Kosztyan*, Aamir Saghir

e-mail: kzst@gtk.uni-pannon.hu

KosztyĆ”n, Z. T. (2022). MFPP: Matrix-based flexible project planning. SoftwareX, 17, 100973.

`tpc`

, `tpq`

, `tpr`

, `tpt`

.

```
# Calculatation of the maximal score value of the project scenario using MFPP package.
# Define a 3 by 3 upper triangular adjacency matrix (PEM) of logic domain of a project.
PEM <- rbind(c(0.8,0.4,0.8),
c(0.0,0.7,0.7),
c(0.0,0.0,0.4))
# Define a 3 by 3 score matrix of task/dependency inclusion.
P <- PEM
# Define a 3 by 3 score matrix of task/dependency exclusion.
Q <- 1-P
# Calculation of the maximal score value of the project using MFPP package.
maxscore_PEM(PEM,P, Q)
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.