View source: R/mfpp.R View source: R/tpr.r
tpr | R Documentation |
Calculate maximum resource demands of a project scenario.
tpr (SST,DSM,TD, RD,res.graph=FALSE)
SST |
N by 1 vector of Scheduled Start Time (a numeric vector). |
DSM |
N by N binary upper triangular matrix of the logic domain (a numeric matrix). |
TD |
N by 1 vector of task durations (a numeric vector). |
RD |
N by nR matrix of resource demands (a numeric matrix). |
res.graph |
Logic value of whether plot or not the resource graph |
rMAX |
an nR by 1 vector of maximum resource demands (a scalar vector). |
Zsolt T. Kosztyan*, Aamir Saghir
e-mail: kzst@gtk.uni-pannon.hu
KosztyƔn, Z. T. (2022). MFPP: Matrix-based flexible project planning. SoftwareX, 17, 100973.
tpc
, tpq
, tpt
, maxscore_PEM
.
# Calculatation of maximum resource demands of a project scenario using MFPP package.
library(pracma)
# Generate a 10 by 10 upper triangular binary matrix (DSM) of logic domain of a project.
DSM <- triu(round(rand(10)))
# Generate a 10 by 1 vector of task durations of a project.
TD <- rand(10,1)*20
# Define a 10 by 1 vector of Scheduled Start Time using tpt function.
SST <- tpt(DSM,TD)[["EST"]]
# Generate a 10 by 3 matrix of resource demands of a project.
RD <- rand(10,3)*5
# Calculation of maximum resource demands of a project using MFPP package.
tpr(SST,DSM,TD, RD)
## Plot resources for SST
tpr(SST,DSM,TD,RD,res.graph = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.