Nothing
#' Performs K-means without variable selection.
#'
#' \code{doclusterkmeansnone} performs K-means clustering without variable
#' selection.
#' @param data internally provided by \code{doclusterkmeans} function.
#' @param k internally provided by \code{doclusterkmeans} function.
#' @param metriccent internally provided by \code{doclusterkmeans} function.
#' @param inertiapower internally provided by \code{doclusterkmeans} function.
#' @param centpos internally provided by \code{doclusterkmeans} function.
#' @param initcl internally provided by \code{doclusterkmeans} function.
#' @return internal value to be used by \code{doclusterkmeans} function.
#' @keywords internal
doclusterkmeansnone <- function(data, k, metriccent, inertiapower = 1, centpos,
initcl) {
numberofpatterns <- sum(!duplicated(data))
if (numberofpatterns < k)
stop("Number of patterns is less than number of clusters.")
if (initcl == "hc") {
hc <- stats::hclust(dist(data), method = "complete")
cluster <- stats::cutree(hc, k = k)
}
if (initcl == "rand")
cluster <- sample(x = 1:k, size = nrow(data), replace = TRUE)
initialcentroids <- centroid(data = data, cluster = cluster, centpos = centpos)
while (sum(duplicated(initialcentroids)) > 0)
initialcentroids <- getinitialcentroids(data, k)
colnames(initialcentroids) <- names(data)
mod <- flexclust::kcca(x = data, k = as.matrix(initialcentroids),
family = metriccent, simple = TRUE)
clustervector <- mod@cluster
critcf <- getcritcfkcca(mod, inertiapower = inertiapower)
res <- list(clustervector = clustervector, critcfmax = critcf)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.