Description Usage Arguments Details Value Author(s) Examples
Creates a weight and lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.
1 2 3 4 5 6 7 8 9 10 11 12 |
formula |
the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula |
data |
a list containing data with mixed frequencies |
start |
the starting values for optimisation excluding the starting values for the last term |
table |
an wls_table object, see expand_weights_lags |
IC |
the names of information criteria which to compute |
test |
the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table |
Ofunction |
see midasr |
weight_gradients |
see midas_r |
show_progress |
logical, TRUE to show progress bar, FALSE for silent evaluation |
... |
additional parameters to optimisation function, see midas_r |
This function estimates models sequentially increasing the midas lag from kmin
to kmax
and varying the weights of the last term of the given formula
a midas_r_ic_table
object which is the list with the following elements:
table |
the table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure |
candlist |
the list containing fitted models |
IC |
the argument IC |
Virmantas Kvedaras, Vaidotas Zemlys
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
trend <- 1:length(y)
mwlr <- midas_r_ic_table(y~trend+fmls(x,12,12,nealmon),
table=list(x=list(weights=
as.list(c("nealmon","nealmon","nbeta")),
lags=list(0:4,0:5,0:6),
starts=list(rep(0,3),rep(0,3,),c(1,1,1,0)))))
mwlr
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.