Description Usage Arguments Details Value Author(s) References Examples
Estimate unrestricted MIDAS regression using OLS. This function is a wrapper for lm
.
1 |
formula |
MIDAS regression model formula |
data |
a named list containing data with mixed frequencies |
... |
further arguments, which could be passed to |
MIDAS regression has the following form:
y_t = ∑_{j=1}^pα_jy_{t-j} +∑_{i=0}^{k}∑_{j=0}^{l_i}β_{j}^{(i)}x_{tm_i-j}^{(i)} + u_t,
where x_τ^{(i)}, i=0,...k are regressors of higher (or similar) frequency than y_t. Given certain assumptions the coefficients can be estimated using usual OLS and they have the familiar properties associated with simple linear regression.
lm
object.
Virmantas Kvedaras, Vaidotas Zemlys
Kvedaras V., Zemlys, V. Testing the functional constraints on parameters in regressions with variables of different frequency Economics Letters 116 (2012) 250-254
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ##The parameter function
theta_h0 <- function(p, dk, ...) {
i <- (1:dk-1)/100
pol <- p[3]*i + p[4]*i^2
(p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Plot the coefficients
##Do not run
#plot(theta0)
##' ##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))
##Create low frequency data.frame
ldt <- data.frame(y=y,trend=1:length(y))
##Create high frequency data.frame
hdt <- data.frame(x=window(x, start=start(y)))
##Fit unrestricted model
mu <- midas_u(y~fmls(x,2,12)-1, list(ldt, hdt))
##Include intercept and trend in regression
mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, hdt))
##Pass data as partialy named list
mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, x=hdt$x))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.