| nealmon | R Documentation |
Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.
nealmon(p, d, m)
p |
parameters for Almon lag |
d |
number of the coefficients |
m |
the frequency, currently ignored. |
Given unrestricted MIDAS regression
y_t=\sum_{h=0}^d\theta_{h}x_{tm-h}+\mathbf{z_t}\beta+u_t
normalized exponential Almon lag restricts the coefficients theta_h in the following way:
\theta_{h}=\delta\frac{\exp(\lambda_1(h+1)+\dots+
\lambda_r(h+1)^r)}{\sum_{s=0}^d\exp(\lambda_1(s+1)+\dots+\lambda_r(h+1)^r)}
The parameter \delta should be the first element in vector p. The degree of
the polynomial is then decided by the number of the remaining parameters.
vector of coefficients
Virmantas Kvedaras, Vaidotas Zemlys
##Load data
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
t <- 1:length(y)
midas_r(y~t+fmls(x,11,12,nealmon),start=list(x=c(0,0,0)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.