Description Usage Arguments Details Value Author(s) Examples
Calculate normalized exponential Almon lag coefficients given the parameters and required number of coefficients.
1 | nealmon(p, d, m)
|
p |
parameters for Almon lag |
d |
number of the coefficients |
m |
the frequency, currently ignored. |
Given unrestricted MIDAS regression
y_t=∑_{h=0}^dθ_{h}x_{tm-h}+\mathbf{z_t}β+u_t
normalized exponential Almon lag restricts the coefficients theta_h in the following way:
θ_{h}=δ\frac{\exp(λ_1(h+1)+…+λ_r(h+1)^r)}{∑_{s=0}^d\exp(λ_1(s+1)+…+λ_r(h+1)^r)}
The parameter δ should be the first element in vector p
. The degree of the polynomial is then decided by the number of the remaining parameters.
vector of coefficients
Virmantas Kvedaras, Vaidotas Zemlys
1 2 3 4 5 6 7 8 9 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.