View source: R/midas_r_methods.R
| predict.midas_r | R Documentation | 
Predicted values based on midas_r object.
## S3 method for class 'midas_r'
predict(object, newdata, na.action = na.omit, ...)
| object | 
 | 
| newdata | a named list containing data for mixed frequencies. If omitted, the in-sample values are used. | 
| na.action | function determining what should be done with missing values in  | 
| ... | additional arguments, not used | 
predict.midas_r produces predicted values, obtained by evaluating regression function in the frame newdata. This means that the appropriate model matrix is constructed using only the data in newdata. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.
a vector of predicted values
Virmantas Kvedaras, Vaidotas Zemlys
data("USrealgdp")
data("USunempr")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start = 1949)
##24 high frequency lags of x included
mr <- midas_r(y ~ fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))
##Declining unemployment
xn <- rnorm(2 * 12, -0.1, 0.1)
##Only one predicted value, historical values discarded
predict(mr, list(x = xn))
##Historical values taken into account
forecast(mr, list(x = xn))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.