Description Usage Arguments Details Value Author(s) Examples
View source: R/midas_r_methods.R
Predicted values based on midas_r
object.
1 2 |
object |
|
newdata |
a named list containing data for mixed frequencies. If omitted, the in-sample values are used. |
na.action |
function determining what should be done with missing values in |
... |
additional arguments, not used |
predict.midas_r
produces predicted values, obtained by evaluating regression function in the frame newdata
. This means that the appropriate model matrix is constructed using only the data in newdata
. This makes this function not very convenient for forecasting purposes. If you want to supply the new data for forecasting horizon only use the function forecast.midas_r. Also this function produces only static predictions, if you want dynamic forecasts use the forecast.midas_r.
a vector of predicted values
Virmantas Kvedaras, Vaidotas Zemlys
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | data("USrealgdp")
data("USunempr")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr), start = 1949)
##24 high frequency lags of x included
mr <- midas_r(y ~ fmls(x, 23, 12, nealmon), start = list(x = rep(0, 3)))
##Declining unemployment
xn <- rnorm(2 * 12, -0.1, 0.1)
##Only one predicted value, historical values discarded
predict(mr, list(x = xn))
##Historical values taken into account
forecast(mr, list(x = xn))
|
Loading required package: sandwich
Loading required package: optimx
[1] 0.05975278
Point Forecast
2012 0.05638813
2013 0.05975278
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.