| dict_scalors_nondom | R Documentation |
Scalor that returns a the rank of the pareto-front in nondominated sorting as scale. Higher ranks
indocate higher fitnesses and therefore "better" individuals.
epsilon
nadir
jitter
scale_output
tiebreak
Supported Domain classes are: p_lgl ('ParamLgl'), p_int ('ParamInt'), p_dbl ('ParamDbl'), p_fct ('ParamFct')
This Scalor can be created with the short access form scl()
(scls() to get a list), or through the the dictionary
dict_scalors in the following way:
# preferred:
scl("nondom")
scls("nondom") # takes vector IDs, returns list of Scalors
# long form:
dict_scalors$get("nondom")
miesmuschel::MiesOperator -> miesmuschel::Scalor -> ScalorNondom
new()Initialize the ScalorNondom object.
ScalorNondom$new()
clone()The objects of this class are cloneable with this method.
ScalorNondom$clone(deep = FALSE)
deepWhether to make a deep clone.
Other scalors:
Scalor,
dict_scalors_aggregate,
dict_scalors_domcount,
dict_scalors_fixedprojection,
dict_scalors_hypervolume,
dict_scalors_one,
dict_scalors_proxy,
dict_scalors_single
so = scl("nondom")
p = ps(x = p_dbl(-5, 5))
# dummy data; note that ScalorNondom does not depend on data content
data = data.frame(x = rep(0, 5))
fitnesses = matrix(c(1, 5, 2, 3, 0, 3, 1, 0, 10, 8), ncol = 2)
so$prime(p)
so$operate(data, fitnesses)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.