Nothing
#' Combine data frame with its 'class' and 'raw' predictions
.get_pred_matrix <- function(df, fit) {
df %>%
dplyr::bind_cols(predict(fit, new_data = df)) %>%
dplyr::bind_cols(predict(fit, new_data = df, type = "raw"))
}
#' Summarize predictions
.summarize_preds <- function(pred, by = bag_name) {
pred %>%
dplyr::group_by({{ by }}) %>%
dplyr::distinct(bag_label, .pred, .pred_class)
}
#' Thin wrapper to run `cv_misvm()` in tests
.run_cv_misvm <- function(df = df1,
features = 3:5,
n_fold = 3,
cost_seq = 2^c(-2, 4),
...) {
cv_misvm(x = df[, features],
y = df$bag_label,
bags = df$bag_name,
n_fold = n_fold,
cost_seq = cost_seq,
...)
}
#' Thin wrapper to run `mismm()` in tests
.run_mismm <- function(df,
features = 4:6,
...) {
df <- tibble::as_tibble(df)
mismm(x = df[, features],
y = df$bag_label,
bags = df$bag_name,
instances = df$instance_name,
...)
}
#' Thin wrapper to run `omisvm()` in tests
.run_omisvm <- function(df, .features = paste0("V", 1:5), .seed = 8, ...) {
set.seed(.seed) # random selection of instances
df <- tibble::as_tibble(df)
omisvm(x = df[, .features],
y = df$bag_label,
bags = df$bag_name,
...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.