miss.glm.fit: Fitting Logistic Regression Models with Missing Values

Description Usage Arguments Value Examples

Description

This function is used inside miss.glm to fit logistic regression model with missing values, by algorithm SAEM.

Usage

1
miss.glm.fit(x, y, control = list())

Arguments

x

design matrix with missingness N * p.

y

response vector N * 1.

control

a list of parameters for controlling the fitting process. For miss.glm.fit this is passed to miss.glm.control.

Value

a list with following components:

coefficients

Estimated β.

ll

Observed log-likelihood.

var.covar

Variance-covariance matrix for estimated parameters.

s.err

Standard error for estimated parameters.

mu.X

Estimated μ.

Sig.X

Estimated Σ.

Examples

1
## For examples see example(miss.glm)

Example output

Warning message:
replacing previous importmice::filterbystats::filterwhen loadingmisaem

misaem documentation built on April 12, 2021, 9:06 a.m.