Description Usage Arguments Value Examples
View source: R/miss.lm.model.select.R
Model selection for the linear regression model with missing data.
1 | miss.lm.model.select(Y, X)
|
Y |
Response vector N * 1 |
X |
Design matrix with missingness N * p |
An object of class "miss.lm
".
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50
p <- 2
X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.X) +
matrix(rep(mu.X,n), nrow=n, byrow = TRUE)
b <- c(2, 0, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b + rnorm(n, 0, sigma.eps)
# Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
# model selection
miss.model = miss.lm.model.select(y, X.obs)
print(miss.model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.