Description Usage Arguments Value References Examples
Functions for Mixture Link Binomial distribution
1 2 3 4 5 | r.mixlink.binom(n, mean, Pi, kappa, m, save.latent = FALSE)
d.mixlink.binom(y, m, mean, Pi, kappa, log = FALSE)
p.mixlink.binom(y, m, mean, Pi, kappa)
|
n |
Number of observations to draw |
mean |
Parameter \vartheta of distribution |
Pi |
Parameter \bm{π} of distribution |
kappa |
Parameter κ of distribution |
m |
Number of success/failure trials |
save.latent |
Save intermediate latent variables used during draw. |
y |
Argument of pdf or cdf |
log |
Return log of the result (TRUE or FALSE) |
d.mixlink.binom gives the density,
p.mixlink.binom gives the distribution function, and
r.mixlink.binom generates random deviates.
Andrew M. Raim, Nagaraj K. Neerchal, and Jorge G. Morel. An Extension of Generalized Linear Models to Finite Mixture Outcomes. arXiv preprint: 1612.03302
1 2 3 4 5 6 7 8 | mean.true <- 1/3
Pi.true <- c(1/5, 4/5)
kappa.true <- 0.5
m <- 10
r.mixlink.binom(n = 30, mean.true, Pi.true, kappa.true, m)
d.mixlink.binom(y = 5, m, mean.true, Pi.true, kappa.true)
d.mixlink.binom(y = 5, m, mean.true, Pi.true, kappa.true, log = TRUE)
p.mixlink.binom(y = 5, m, mean.true, Pi.true, kappa.true)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.