Description Usage Arguments Value References Examples
Numerical maximum likelihood estimation for Mixture Link Binomial and Poisson models.
1 2 3 4 5 6 7 8 9 10 11 | mle.mixlink.binom(y, m, J, extra.tx = null.tx, var.names = NULL,
phi.init = NULL)
mle.mixlink.binom.x(y, m, X, J, extra.tx = null.tx, var.names = NULL,
phi.init = NULL, invlink.mean = plogis)
mle.mixlink.pois(y, J, extra.tx = null.tx, var.names = NULL,
phi.init = NULL)
mle.mixlink.pois.x(y, X, J, extra.tx = null.tx, var.names = NULL,
phi.init = NULL, invlink.mean = exp)
|
y |
Argument of pdf or cdf. |
m |
Number of success/failure trials. |
J |
Number of mixture components to use. |
extra.tx |
If additional functions of \bm{θ} are to be
estimated, they can be specified here. The default |
var.names |
A vector of strings to use for parameter names. The
default ( |
phi.init |
Intial value of the unconstrained \bm{φ}
parameters. Internally, a transformation \bm{θ} is applied
to \bm{φ} to obtain parameters in the correct space. The
default ( |
X |
Design matrix for regression case. |
invlink.mean |
The inverse link function for the mean. Default is
|
A list with MLE results. Can be accessed through the functions
confint, print, summary, coef, logLik
AIC, BIC, and vcov.
Andrew M. Raim, Nagaraj K. Neerchal, and Jorge G. Morel. An Extension of Generalized Linear Models to Finite Mixture Outcomes. arXiv preprint: 1612.03302
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
n <- 400
mean.true <- rep(20, n)
Pi.true <- c(1/5, 4/5)
kappa.true <- 2
y <- r.mixlink.pois(n, mean.true, Pi.true, kappa.true)
mle.out <- mle.mixlink.pois(y, J = 2)
coef(mle.out)
print(mle.out)
confint(mle.out)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.