Logistic: The Logistic Distribution

Description Usage Arguments Details Value Note Source References See Also Examples

Description

Density, distribution function, quantile function and random generation for the logistic distribution with parameters location and scale.

Usage

1
2
3
4
dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

location, scale

location and scale parameters.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The Logistic distribution with location = m and scale = s has distribution function

F(x) = 1 / (1 + exp(-(x-m)/s))

and density

f(x) = 1/s exp((x-m)/s) (1 + exp((x-m)/s))^-2.

It is a long-tailed distribution with mean m and variance π^2 /3 s^2.

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile function, and rlogis generates random deviates.

The length of the result is determined by n for rlogis, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Note

qlogis(p) is the same as the well known ‘logit’ function, logit(p) = log(p/(1-p)), and plogis(x) has consequently been called the ‘inverse logit’.

The distribution function is a rescaled hyperbolic tangent, plogis(x) == (1+ tanh(x/2))/2, and it is called a sigmoid function in contexts such as neural networks.

Source

[dpq]logis are calculated directly from the definitions.

rlogis uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 2, chapter 23. Wiley, New York.

See Also

Distributions for other standard distributions.

Examples

1
2
var(rlogis(4000, 0, scale = 5))  # approximately (+/- 3)
pi^2/3 * 5^2

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.