Nothing
test_that("draw obeys its contract (with vgam)", {
withr::local_seed(0)
dts <- sample(c("A", "B", "C"), 1000, replace = TRUE)
y <- ifelse(runif(length(dts)) > 0.5, c(dts[-1], sample(c("A", "B", "C"), 1)), c(dts[-c(1, 2)], sample(c("A", "B", "C"), 2, replace = TRUE)))
y <- as.factor(ifelse(runif(length(dts)) > 0.2, y, sample(c("A", "B", "C"), length(dts), replace = TRUE)))
df_y <- data.frame(y = y)
model <- covlmc(dts, df_y, alpha = 0.01, min_size = 1.5)
expect_snapshot_output(draw(model, model = NULL, p_value = FALSE))
expect_snapshot_output(draw(prune(model, 0.0001)))
expect_snapshot_output(draw(prune(model, 0.0001), time_sep = " | "))
expect_snapshot_output(draw(prune(model, 0.0001), model = "full", time_sep = " | "))
expect_snapshot_output(draw(prune(model, 0.0001), model = "full", time_sep = " | ", with_state = TRUE))
expect_snapshot_output(draw(prune(model, 0.0001), model = "coef", time_sep = " | ", with_state = TRUE))
## the following snapshots depend on blas version
## skip_on_ci()
## expect_snapshot_output(draw(model))
## expect_snapshot_output(draw(model, time_sep = " | "))
## expect_snapshot_output(draw(model, digits = 3))
## expect_snapshot_output(draw(model, model = NULL, digits = 2))
## expect_snapshot_output(draw(model, p_value = FALSE, digits = 1))
## expect_snapshot_output(draw(model, model = "full", time_sep = " ~ ", digits = 1))
## expect_snapshot_output(draw(model, model = "full", time_sep = " ~ ", digits = 5, with_state = TRUE))
## expect_snapshot_output(draw(model, model = "coef", time_sep = " ~ ", digits = 5, with_state = TRUE))
})
test_that("draw obeys its contract (with nnet)", {
withr::local_seed(0)
withr::local_options(mixvlmc.predictive = "multinom")
dts <- sample(c("A", "B", "C"), 1000, replace = TRUE)
y <- ifelse(runif(length(dts)) > 0.5, c(dts[-1], sample(c("A", "B", "C"), 1)), c(dts[-c(1, 2)], sample(c("A", "B", "C"), 2, replace = TRUE)))
y <- as.factor(ifelse(runif(length(dts)) > 0.2, y, sample(c("A", "B", "C"), length(dts), replace = TRUE)))
df_y <- data.frame(y = y)
model <- covlmc(dts, df_y, alpha = 0.01, min_size = 1.5)
expect_snapshot_output(draw(model))
expect_snapshot_output(draw(model, time_sep = " | "))
expect_snapshot_output(draw(model, digits = 3))
expect_snapshot_output(draw(model, model = NULL, digits = 2))
expect_snapshot_output(draw(model, p_value = FALSE, digits = 1))
expect_snapshot_output(draw(model, model = "full", time_sep = " ^ ", digits = 1))
expect_snapshot_output(draw(model, model = "full", time_sep = " ^ ", digits = 3, with_state = TRUE))
expect_snapshot_output(draw(model, model = "coef", time_sep = " ^ ", digits = 3, with_state = TRUE))
})
test_that("draw handles cases when levels have been dropped", {
withr::local_seed(0)
x <- sample(c(0, 1), 200, replace = TRUE)
xl1 <- forward_match_all_ctx_counts(x, 2)
xl2_0 <- forward_match_all_ctx_counts(x, 2, 1, xl1$positions[[1]])
xl2_1 <- forward_match_all_ctx_counts(x, 2, 1, xl1$positions[[2]])
y <- rep(1, length(x))
y[xl2_0$positions[[1]] + 1] <- sample(2:4, length(xl2_0$positions[[1]]), replace = TRUE)
y[xl2_0$positions[[2]] + 1] <- sample(c(1, 3:4), length(xl2_0$positions[[2]]), replace = TRUE)
y[xl2_1$positions[[1]] + 1] <- sample(c(1:2, 4), length(xl2_1$positions[[1]]), replace = TRUE)
y[xl2_1$positions[[2]] + 1] <- sample(1:3, length(xl2_1$positions[[2]]), replace = TRUE)
y <- as.factor(y)
z <- runif(length(x)) + c(x[-1], 0) / 4
dts_cov <- data.frame(y = y, z = z)
m_cov <- covlmc(x = x, covariate = dts_cov, min_size = 3, alpha = 0.5)
expect_snapshot_output(draw(m_cov, model = "full", time_sep = " | ", digits = 1))
expect_snapshot_output(draw(m_cov, model = "full", time_sep = " | ", digits = 2, with_state = TRUE))
})
test_that("draw handles cases when multinom is used for two states time series", {
withr::local_seed(0)
withr::local_options(mixvlmc.predictive = "multinom")
x <- sample(c(0, 1), 200, replace = TRUE)
xl1 <- forward_match_all_ctx_counts(x, 2)
xl2_0 <- forward_match_all_ctx_counts(x, 2, 1, xl1$positions[[1]])
xl2_1 <- forward_match_all_ctx_counts(x, 2, 1, xl1$positions[[2]])
y <- rep(1, length(x))
y[xl2_0$positions[[1]] + 1] <- sample(2:4, length(xl2_0$positions[[1]]), replace = TRUE)
y[xl2_0$positions[[2]] + 1] <- sample(c(1, 3:4), length(xl2_0$positions[[2]]), replace = TRUE)
y[xl2_1$positions[[1]] + 1] <- sample(c(1:2, 4), length(xl2_1$positions[[1]]), replace = TRUE)
y[xl2_1$positions[[2]] + 1] <- sample(1:3, length(xl2_1$positions[[2]]), replace = TRUE)
y <- as.factor(y)
z <- runif(length(x)) + c(x[-1], 0) / 4
dts_cov <- data.frame(y = y, z = z)
m_cov <- covlmc(x = x, covariate = dts_cov, min_size = 3, alpha = 0.5)
expect_snapshot_output(draw(m_cov, model = "full", time_sep = " | ", digits = 1))
expect_snapshot_output(draw(m_cov, model = "full", time_sep = " | ", digits = 1, with_state = TRUE))
})
test_that("draw handles degenerate cases", {
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
pc <- powerconsumption[powerconsumption$week %in% 5:7, ]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10, keep_data = TRUE)
expect_snapshot_output(draw(m_cov, model = "coef", time_sep = " | ", with_state = TRUE, digits = 2))
expect_snapshot_output(draw(m_cov, model = "full", time_sep = " | ", with_state = TRUE, digits = 2))
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.