Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
## -----------------------------------------------------------------------------
library(mlbench)
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[1:8]
target_col <- "diabetes"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- dataset[data_split$train, get(target_col)]
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- dataset[data_split$test, get(target_col)]
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(method = "class")
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(type = "prob")
performance_metric <- metric("auc")
performance_metric_args <- list(positive = "pos")
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
minsplit = seq(2L, 82L, 10L),
cp = seq(0.01, 0.1, 0.01),
maxdepth = seq(2L, 30L, 5L)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
minsplit = c(2L, 100L),
cp = c(0.01, 0.1),
maxdepth = c(2L, 30L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Parameter settings [=================================================================================================] 10/10 (100%)
#> Classification: using 'classification error rate' as optimization metric.
head(tuner_results_grid)
#> setting_id metric_optim_mean minsplit cp maxdepth method
#> 1: 1 0.1860709 2 0.07 22 class
#> 2: 2 0.1860709 32 0.02 27 class
#> 3: 3 0.1860709 72 0.10 7 class
#> 4: 4 0.1860709 32 0.09 27 class
#> 5: 5 0.1860709 52 0.02 12 class
#> 6: 6 0.1860709 2 0.04 7 class
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id minsplit cp maxdepth gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean errorMessage method
#> 1: 0 1 2 0.07 22 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 2: 0 2 32 0.02 27 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 3: 0 3 72 0.10 7 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 4: 0 4 32 0.09 27 NA FALSE TRUE 0.044 -0.1860709 0.1860709 NA class
#> 5: 0 5 52 0.02 12 NA FALSE TRUE 0.020 -0.1860709 0.1860709 NA class
#> 6: 0 6 2 0.04 7 NA FALSE TRUE 0.021 -0.1860709 0.1860709 NA class
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = LearnerRpart$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.8323638 2 0.07 22 class
#> 2: Fold2 0.7342676 2 0.07 22 class
#> 3: Fold3 0.7959299 2 0.07 22 class
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
#>
#> Classification: using 'classification error rate' as optimization metric.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.7496034 42 0.02 2 class
#> 2: Fold2 0.6845584 42 0.02 2 class
#> 3: Fold3 0.7959299 2 0.07 22 class
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 0.7496034 42 0.02 2 class
#> 2: Fold2 0.6845584 42 0.02 2 class
#> 3: Fold3 0.7959299 2 0.07 22 class
## -----------------------------------------------------------------------------
validator_glm <- mlexperiments::MLCrossValidation$new(
learner = LearnerGlm$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator_glm$learner_args <- list(family = binomial(link = "logit"))
validator_glm$predict_args <- list(type = "response")
validator_glm$performance_metric <- performance_metric
validator_glm$performance_metric_args <- performance_metric_args
validator_glm$return_models <- TRUE
validator_glm$set_data(
x = train_x,
y = train_y
)
validator_glm_results <- validator_glm$execute()
#>
#> CV fold: Fold1
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#>
#> CV fold: Fold2
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#>
#> CV fold: Fold3
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
head(validator_glm_results)
#> fold performance
#> 1: Fold1 0.8746695
#> 2: Fold2 0.8751983
#> 3: Fold3 0.8801583
## -----------------------------------------------------------------------------
mlexperiments::validate_fold_equality(
experiments = list(validator, validator_glm)
)
#>
#> Testing for identical folds in 1 and 2.
#>
#> Testing for identical folds in 2 and 1.
## -----------------------------------------------------------------------------
preds_rpart <- mlexperiments::predictions(
object = validator,
newdata = test_x
)
preds_glm <- mlexperiments::predictions(
object = validator_glm,
newdata = test_x
)
## -----------------------------------------------------------------------------
perf_rpart <- mlexperiments::performance(
object = validator,
prediction_results = preds_rpart,
y_ground_truth = test_y,
type = "binary"
)
perf_glm <- mlexperiments::performance(
object = validator_glm,
prediction_results = preds_glm,
y_ground_truth = test_y,
type = "binary"
)
## -----------------------------------------------------------------------------
# combine results for plotting
final_results <- rbind(
cbind(algorithm = "rpart", perf_rpart),
cbind(algorithm = "glm", perf_glm)
)
## -----------------------------------------------------------------------------
# p <- ggpubr::ggdotchart(
# data = final_results,
# x = "algorithm",
# y = "auc",
# color = "model",
# rotate = TRUE
# )
# p
## ----include=FALSE------------------------------------------------------------
# ggplot2::ggsave(
# filename = "rpart_chart_bin.png",
# plot = p
# )
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.