Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
## -----------------------------------------------------------------------------
library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[1:13]
target_col <- "medv"
cat_vars <- "chas"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- data.matrix(
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- dataset[data_split$train, get(target_col)]
test_x <- data.matrix(
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- dataset[data_split$test, get(target_col)]
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(method = "anova")
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(type = "vector")
performance_metric <- metric("mse")
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
minsplit = seq(2L, 82L, 10L),
cp = seq(0.01, 0.1, 0.01),
maxdepth = seq(2L, 30L, 5L)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
minsplit = c(2L, 100L),
cp = c(0.01, 0.1),
maxdepth = c(2L, 30L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
tuner_results_grid <- tuner$execute(k = 3)
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Regression: using 'mean squared error' as optimization metric.
head(tuner_results_grid)
#> setting_id metric_optim_mean minsplit cp maxdepth method
#> 1: 1 26.14038 2 0.07 22 anova
#> 2: 2 26.14038 32 0.02 27 anova
#> 3: 3 26.14038 72 0.10 7 anova
#> 4: 4 26.14038 32 0.09 27 anova
#> 5: 5 26.14038 52 0.02 12 anova
#> 6: 6 26.14038 2 0.04 7 anova
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id minsplit cp maxdepth gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean errorMessage method
#> 1: 0 1 2 0.07 22 NA FALSE TRUE 0.049 -26.14038 26.14038 NA anova
#> 2: 0 2 32 0.02 27 NA FALSE TRUE 0.049 -26.14038 26.14038 NA anova
#> 3: 0 3 72 0.10 7 NA FALSE TRUE 0.049 -26.14038 26.14038 NA anova
#> 4: 0 4 32 0.09 27 NA FALSE TRUE 0.049 -26.14038 26.14038 NA anova
#> 5: 0 5 52 0.02 12 NA FALSE TRUE 0.027 -26.14038 26.14038 NA anova
#> 6: 0 6 2 0.04 7 NA FALSE TRUE 0.027 -26.14038 26.14038 NA anova
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = LearnerRpart$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 29.20022 2 0.07 22 anova
#> 2: Fold2 17.76631 2 0.07 22 anova
#> 3: Fold3 31.45460 2 0.07 22 anova
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Regression: using 'mean squared error' as optimization metric.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Regression: using 'mean squared error' as optimization metric.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Regression: using 'mean squared error' as optimization metric.
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> Regression: using 'mean squared error' as optimization metric.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 29.20022 2 0.07 22 anova
#> 2: Fold2 17.76631 2 0.07 22 anova
#> 3: Fold3 31.45460 2 0.07 22 anova
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance minsplit cp maxdepth method
#> 1: Fold1 29.20022 2 0.07 22 anova
#> 2: Fold2 17.76631 2 0.07 22 anova
#> 3: Fold3 31.45460 2 0.07 22 anova
## -----------------------------------------------------------------------------
validator_lm <- mlexperiments::MLCrossValidation$new(
learner = LearnerLm$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator_lm$predict_args <- list(type = "response")
validator_lm$performance_metric <- performance_metric
validator_lm$performance_metric_args <- performance_metric_args
validator_lm$return_models <- TRUE
validator_lm$set_data(
x = train_x,
y = train_y,
cat_vars = cat_vars
)
validator_lm_results <- validator_lm$execute()
#>
#> CV fold: Fold1
#> Parameter 'ncores' is ignored for learner 'LearnerLm'.
#>
#> CV fold: Fold2
#> Parameter 'ncores' is ignored for learner 'LearnerLm'.
#>
#> CV fold: Fold3
#> Parameter 'ncores' is ignored for learner 'LearnerLm'.
head(validator_lm_results)
#> fold performance
#> 1: Fold1 35.49058
#> 2: Fold2 22.04977
#> 3: Fold3 21.39721
## -----------------------------------------------------------------------------
mlexperiments::validate_fold_equality(
experiments = list(validator, validator_lm)
)
#>
#> Testing for identical folds in 1 and 2.
#>
#> Testing for identical folds in 2 and 1.
## -----------------------------------------------------------------------------
preds_rpart <- mlexperiments::predictions(
object = validator,
newdata = test_x,
cat_vars = cat_vars
)
preds_lm <- mlexperiments::predictions(
object = validator_lm,
newdata = test_x,
cat_vars = cat_vars
)
## -----------------------------------------------------------------------------
perf_rpart <- mlexperiments::performance(
object = validator,
prediction_results = preds_rpart,
y_ground_truth = test_y,
type = "regression"
)
perf_lm <- mlexperiments::performance(
object = validator_lm,
prediction_results = preds_lm,
y_ground_truth = test_y,
type = "regression"
)
## -----------------------------------------------------------------------------
# combine results for plotting
final_results <- rbind(
cbind(algorithm = "rpart", perf_rpart),
cbind(algorithm = "lm", perf_lm)
)
## -----------------------------------------------------------------------------
# p <- ggpubr::ggdotchart(
# data = final_results,
# x = "algorithm",
# y = "mse",
# color = "model",
# rotate = TRUE
# )
# p
## ----include=FALSE------------------------------------------------------------
# ggplot2::ggsave(
# filename = "rpart_chart_reg.png",
# plot = p,
# width = 7,
# height = 5
# )
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.