Nothing
library(mlbench)
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 |>
data.table::as.data.table() |>
na.omit()
seed <- 123
feature_cols <- colnames(dataset)[1:8]
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = feature_cols]
)
train_y <- dataset[, get("diabetes")]
fold_list <- splitTools::create_folds(
y = train_y,
k = 5,
type = "stratified",
seed = seed
)
# ###########################################################################
# %% CV
# ###########################################################################
test_that(
desc = "test cv - glm",
code = {
glm_optimization <- mlexperiments::MLCrossValidation$new(
learner = LearnerGlm$new(),
fold_list = fold_list,
seed = seed
)
glm_optimization$learner_args <- list(family = binomial(link = "logit"))
glm_optimization$predict_args <- list(type = "response")
glm_optimization$performance_metric_args <- list(positive = "pos")
glm_optimization$performance_metric <- metric("auc")
# set data
glm_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- glm_optimization$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(5, 2))
expect_true(inherits(
x = glm_optimization$results,
what = "mlexCV"
))
}
)
test_that(
desc = "test cv, return models - glm",
code = {
glm_optimization <- mlexperiments::MLCrossValidation$new(
learner = LearnerGlm$new(),
fold_list = fold_list,
seed = seed
)
glm_optimization$learner_args <- list(family = binomial(link = "logit"))
glm_optimization$predict_args <- list(type = "response")
glm_optimization$performance_metric_args <- list(positive = "pos")
glm_optimization$performance_metric <- metric("auc")
glm_optimization$return_models <- TRUE
# set data
glm_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- glm_optimization$execute()
expect_type(cv_results, "list")
expect_true(inherits(
x = glm_optimization$results$folds[[1]]$model,
what = "glm"
))
}
)
# ###########################################################################
# %% TUNING
# ###########################################################################
ncores <- 2L
test_that(
desc = "test bayesian tuner, expect error - glm",
code = {
expect_error(mlexperiments::MLTuneParameters$new(
learner = LearnerGlm$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
))
}
)
test_that(
desc = "test grid, expect error - glm",
code = {
expect_error(mlexperiments::MLTuneParameters$new(
learner = LearnerGlm$new(),
strategy = "grid",
ncores = ncores,
seed = seed
))
}
)
# ###########################################################################
# %% NESTED CV
# ###########################################################################
test_that(
desc = "test nested cv, grid - glm",
code = {
expect_error(mlexperiments::MLNestedCV$new(
learner = LearnerGlm$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
))
}
)
test_that(
desc = "test nested cv, grid - glm",
code = {
expect_error(mlexperiments::MLNestedCV$new(
learner = LearnerGlm$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.