Nothing
library(mlbench)
data("DNA")
dataset <- DNA |>
data.table::as.data.table() |>
na.omit()
seed <- 123
feature_cols <- colnames(dataset)[1:180]
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[, get("Class")]) - 1L
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
options("mlexperiments.bayesian.max_init" = 10L)
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
}
# ###########################################################################
# %% CV
# ###########################################################################
test_that(
desc = "test cv, classification - rpart",
code = {
rpart_optimization <- mlexperiments::MLCrossValidation$new(
learner = LearnerRpart$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
y_weights <- ifelse(train_y == 0, 0.8, ifelse(train_y == 1, 1.2, 1))
rpart_optimization$learner_args <- list(
minsplit = 10L,
maxdepth = 20L,
cp = 0.03,
method = "class",
case_weights = y_weights
)
rpart_optimization$predict_args <- list(type = "class")
rpart_optimization$performance_metric <- metric("bacc")
rpart_optimization$return_models <- TRUE
# set data
rpart_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- rpart_optimization$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 6))
expect_true(inherits(
x = rpart_optimization$results,
what = "mlexCV"
))
}
)
# ###########################################################################
# %% TUNING
# ###########################################################################
rpart_bounds <- list(
minsplit = c(2L, 100L),
cp = c(0.01, 0.1),
maxdepth = c(2L, 30L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
param_list_rpart <- expand.grid(
minsplit = seq(2L, 82L, 10L),
cp = seq(0.01, 0.1, 0.01),
maxdepth = seq(2L, 30L, 5L)
)
test_that(
desc = "test bayesian tuner, initGrid, classification - rpart",
code = {
rpart_optimization <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
rpart_optimization$learner_args <- list(method = "class")
rpart_optimization$parameter_bounds <- rpart_bounds
rpart_optimization$parameter_grid <- param_list_rpart
rpart_optimization$split_type <- "stratified"
rpart_optimization$optim_args <- optim_args
# set data
rpart_optimization$set_data(
x = train_x,
y = train_y
)
cv_results1 <- rpart_optimization$execute(k = 3)
expect_type(cv_results1, "list")
expect_true(inherits(
x = rpart_optimization$results,
what = "mlexTune"
))
}
)
test_that(
desc = "test grid tuner, classification - rpart",
code = {
rpart_optimization <- mlexperiments::MLTuneParameters$new(
learner = LearnerRpart$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
rpart_optimization$learner_args <- list(method = "class")
set.seed(seed)
rand_rows <- sample(seq_len(nrow(param_list_rpart)), 3)
rpart_optimization$parameter_grid <- param_list_rpart[rand_rows, ]
rpart_optimization$split_type <- "stratified"
# set data
rpart_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- rpart_optimization$execute(k = 3)
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 6))
expect_true(inherits(
x = rpart_optimization$results,
what = "mlexTune"
))
}
)
# ###########################################################################
# %% NESTED CV
# ###########################################################################
test_that(
desc = "test nested cv, bayesian, classification - rpart",
code = {
rpart_optimization <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
y_weights <- ifelse(train_y == 0, 0.8, ifelse(train_y == 1, 1.2, 1))
rpart_optimization$learner_args <- list(
method = "class",
case_weights = y_weights
)
rpart_optimization$parameter_grid <- param_list_rpart
rpart_optimization$parameter_bounds <- rpart_bounds
rpart_optimization$split_type <- "stratified"
rpart_optimization$optim_args <- optim_args
rpart_optimization$predict_args <- list(type = "class")
rpart_optimization$performance_metric <- metric("bacc")
# set data
rpart_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- rpart_optimization$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 6))
expect_true(inherits(
x = rpart_optimization$results,
what = "mlexCV"
))
}
)
test_that(
desc = "test nested cv, grid, classification - rpart",
code = {
rpart_optimization <- mlexperiments::MLNestedCV$new(
learner = LearnerRpart$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
rpart_optimization$learner_args <- list(method = "class")
set.seed(seed)
rand_rows <- sample(seq_len(nrow(param_list_rpart)), 3)
rpart_optimization$parameter_grid <- param_list_rpart[rand_rows, ]
rpart_optimization$split_type <- "stratified"
rpart_optimization$predict_args <- list(type = "class")
rpart_optimization$performance_metric <- metric("bacc")
# set data
rpart_optimization$set_data(
x = train_x,
y = train_y
)
cv_results <- rpart_optimization$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 6))
expect_true(inherits(
x = rpart_optimization$results,
what = "mlexCV"
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.