Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
library(mllrnrs)
## -----------------------------------------------------------------------------
library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[1:13]
target_col <- "medv"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- log(dataset[data_split$train, get(target_col)])
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- log(dataset[data_split$test, get(target_col)])
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(
family = "gaussian",
type.measure = "mse",
standardize = TRUE
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(type = "response")
performance_metric <- metric("rmsle")
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
alpha = seq(0, 1, 0.05)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
alpha = c(0., 1.)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean lambda alpha family type.measure standardize
#> 1: 1 0.03927487 0.0004916239 0.70 gaussian mse TRUE
#> 2: 2 0.03926677 0.0003174538 0.90 gaussian mse TRUE
#> 3: 3 0.03926382 0.0004005028 0.65 gaussian mse TRUE
#> 4: 4 0.03924418 0.0021612791 0.10 gaussian mse TRUE
#> 5: 5 0.03926592 0.0006968102 0.45 gaussian mse TRUE
#> 6: 6 0.03923310 0.0029793717 0.05 gaussian mse TRUE
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id alpha gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean lambda errorMessage family
#> 1: 0 1 0.70 NA FALSE TRUE 0.991 -0.03927487 0.03927487 0.0004916239 NA gaussian
#> 2: 0 2 0.90 NA FALSE TRUE 0.962 -0.03926677 0.03926677 0.0003174538 NA gaussian
#> 3: 0 3 0.65 NA FALSE TRUE 0.976 -0.03926382 0.03926382 0.0004005028 NA gaussian
#> 4: 0 4 0.10 NA FALSE TRUE 0.962 -0.03924418 0.03924418 0.0021612791 NA gaussian
#> 5: 0 5 0.45 NA FALSE TRUE 0.023 -0.03926592 0.03926592 0.0006968102 NA gaussian
#> 6: 0 6 0.05 NA FALSE TRUE 0.025 -0.03923310 0.03923310 0.0029793717 NA gaussian
#> type.measure standardize
#> 1: mse TRUE
#> 2: mse TRUE
#> 3: mse TRUE
#> 4: mse TRUE
#> 5: mse TRUE
#> 6: mse TRUE
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance alpha lambda family type.measure standardize
#> 1: Fold1 0.05530167 0.01159355 0.004207556 gaussian mse TRUE
#> 2: Fold2 0.05239743 0.01159355 0.004207556 gaussian mse TRUE
#> 3: Fold3 0.05055533 0.01159355 0.004207556 gaussian mse TRUE
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance lambda alpha family type.measure standardize
#> 1: Fold1 0.05526202 0.008388831 0.05 gaussian mse TRUE
#> 2: Fold2 0.05418003 0.018892213 0.25 gaussian mse TRUE
#> 3: Fold3 0.05059097 0.012894705 0.05 gaussian mse TRUE
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance alpha lambda family type.measure standardize
#> 1: Fold1 0.05541775 0.001528976 0.022251620 gaussian mse TRUE
#> 2: Fold2 0.05293442 0.001528976 0.022305296 gaussian mse TRUE
#> 3: Fold3 0.05056405 0.036876500 0.002985073 gaussian mse TRUE
## -----------------------------------------------------------------------------
preds_glmnet <- mlexperiments::predictions(
object = validator,
newdata = test_x
)
## -----------------------------------------------------------------------------
perf_glmnet <- mlexperiments::performance(
object = validator,
prediction_results = preds_glmnet,
y_ground_truth = test_y,
type = "regression"
)
perf_glmnet
#> model performance mse msle mae mape rmse rmsle rsq sse
#> 1: Fold1 0.05117877 0.03938447 0.002619267 0.1365514 0.04579938 0.1984552 0.05117877 0.7438377 6.104593
#> 2: Fold2 0.05218917 0.03992086 0.002723709 0.1407370 0.04763746 0.1998021 0.05218917 0.7403489 6.187734
#> 3: Fold3 0.04952504 0.03651949 0.002452730 0.1373768 0.04651953 0.1911007 0.04952504 0.7624719 5.660522
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.