Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
library(mllrnrs)
## -----------------------------------------------------------------------------
library(mlbench)
data("DNA")
dataset <- DNA |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[1:180]
target_col <- "Class"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.lgb.nrounds" = 100L)
options("mlexperiments.optim.lgb.early_stopping_rounds" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[data_split$train, get(target_col)]) - 1L
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- as.integer(dataset[data_split$test, get(target_col)]) - 1L
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(
max_depth = -1L,
verbose = -1L,
objective = "multiclass",
metric = "multi_logloss",
num_class = "3"
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(reshape = TRUE)
performance_metric <- metric("bacc")
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
bagging_fraction = seq(0.6, 1, .2),
feature_fraction = seq(0.6, 1, .2),
min_data_in_leaf = seq(2, 10, 2),
learning_rate = seq(0.1, 0.2, 0.1),
num_leaves = seq(2, 20, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
bagging_fraction = c(0.2, 1),
feature_fraction = c(0.2, 1),
min_data_in_leaf = c(2L, 12L),
learning_rate = c(0.1, 0.2),
num_leaves = c(2L, 20L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -1.424655
#> [LightGBM] [Info] Start training from score -0.656204
#> [LightGBM] [Info] Start training from score -1.422637
#> [LightGBM] [Info] Start training from score -1.428239
#> [LightGBM] [Info] Start training from score -0.655482
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves max_depth
#> 1: 1 0.1353093 33 0.6 0.6 4 0.2 18 -1
#> 2: 2 0.1282925 59 0.8 1.0 10 0.2 6 -1
#> 3: 3 0.2360723 100 0.8 0.8 4 0.1 2 -1
#> 4: 4 0.1298904 71 1.0 0.8 4 0.1 10 -1
#> 5: 5 0.1357692 32 1.0 0.6 6 0.2 18 -1
#> 6: 6 0.1313455 64 1.0 1.0 8 0.1 14 -1
#> verbose objective metric num_class
#> 1: -1 multiclass multi_logloss 3
#> 2: -1 multiclass multi_logloss 3
#> 3: -1 multiclass multi_logloss 3
#> 4: -1 multiclass multi_logloss 3
#> 5: -1 multiclass multi_logloss 3
#> 6: -1 multiclass multi_logloss 3
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves gpUtility acqOptimum inBounds
#> 1: 0 1 0.6 0.6 4 0.2 18 NA FALSE TRUE
#> 2: 0 2 0.8 1.0 10 0.2 6 NA FALSE TRUE
#> 3: 0 3 0.8 0.8 4 0.1 2 NA FALSE TRUE
#> 4: 0 4 1.0 0.8 4 0.1 10 NA FALSE TRUE
#> 5: 0 5 1.0 0.6 6 0.2 18 NA FALSE TRUE
#> 6: 0 6 1.0 1.0 8 0.1 14 NA FALSE TRUE
#> Elapsed Score metric_optim_mean nrounds errorMessage max_depth verbose objective metric num_class
#> 1: 1.283 -0.1353093 0.1353093 33 NA -1 -1 multiclass multi_logloss 3
#> 2: 1.300 -0.1282925 0.1282925 59 NA -1 -1 multiclass multi_logloss 3
#> 3: 1.277 -0.2360723 0.2360723 100 NA -1 -1 multiclass multi_logloss 3
#> 4: 1.460 -0.1298904 0.1298904 71 NA -1 -1 multiclass multi_logloss 3
#> 5: 0.360 -0.1357692 0.1357692 32 NA -1 -1 multiclass multi_logloss 3
#> 6: 0.561 -0.1313455 0.1313455 64 NA -1 -1 multiclass multi_logloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1 0.9674260 0.8 0.6 8 0.1 14 66 -1 -1
#> 2: Fold2 0.9534347 0.8 0.6 8 0.1 14 66 -1 -1
#> 3: Fold3 0.9549840 0.8 0.6 8 0.1 14 66 -1 -1
#> objective metric num_class
#> 1: multiclass multi_logloss 3
#> 2: multiclass multi_logloss 3
#> 3: multiclass multi_logloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score -1.423260
#> [LightGBM] [Info] Start training from score -1.427452
#> [LightGBM] [Info] Start training from score -0.655556
#> [LightGBM] [Info] Start training from score -1.428460
#> [LightGBM] [Info] Start training from score -1.420092
#> [LightGBM] [Info] Start training from score -0.656564
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score -1.421241
#> [LightGBM] [Info] Start training from score -1.429645
#> [LightGBM] [Info] Start training from score -0.655482
#> [LightGBM] [Info] Start training from score -1.424424
#> [LightGBM] [Info] Start training from score -1.428634
#> [LightGBM] [Info] Start training from score -0.654471
#> [LightGBM] [Info] Start training from score -1.422251
#> [LightGBM] [Info] Start training from score -1.426444
#> [LightGBM] [Info] Start training from score -0.656491
head(validator_results)
#> fold performance nrounds bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves max_depth verbose
#> 1: Fold1 0.9674260 62 0.8 0.6 8 0.1 14 -1 -1
#> 2: Fold2 0.9506435 64 0.8 1.0 10 0.2 6 -1 -1
#> 3: Fold3 0.9559827 100 0.6 0.6 8 0.1 6 -1 -1
#> objective metric num_class
#> 1: multiclass multi_logloss 3
#> 2: multiclass multi_logloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1 0.9727424 0.2000000 0.2559232 2 0.1992638 20 52 -1 -1
#> 2: Fold2 0.9494955 0.8293692 0.5664407 7 0.1203691 11 76 -1 -1
#> 3: Fold3 0.9568462 0.4438889 0.3041453 10 0.1462295 11 67 -1 -1
#> objective metric num_class
#> 1: multiclass multi_logloss 3
#> 2: multiclass multi_logloss 3
#> 3: multiclass multi_logloss 3
## -----------------------------------------------------------------------------
preds_lightgbm <- mlexperiments::predictions(
object = validator,
newdata = test_x
)
## -----------------------------------------------------------------------------
perf_lightgbm <- mlexperiments::performance(
object = validator,
prediction_results = preds_lightgbm,
y_ground_truth = test_y
)
perf_lightgbm
#> model performance
#> 1: Fold1 0.9596127
#> 2: Fold2 0.9612778
#> 3: Fold3 0.9583793
## -----------------------------------------------------------------------------
# define the target weights
y_weights <- ifelse(train_y == 1, 0.8, ifelse(train_y == 2, 1.2, 1))
head(y_weights)
#> [1] 1.2 1.2 0.0 0.8 0.8 0.0
## -----------------------------------------------------------------------------
tuner_w_weights <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner_w_weights$parameter_grid <- parameter_grid
tuner_w_weights$learner_args <- c(
learner_args,
list(case_weights = y_weights)
)
tuner_w_weights$split_type <- "stratified"
tuner_w_weights$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner_w_weights$execute(k = 3)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves max_depth
#> <int> <num> <int> <num> <num> <num> <num> <num> <int>
#> 1: 1 0.1294454 29 0.6 0.6 4 0.2 18 -1
#> 2: 2 0.1221349 51 0.8 1.0 10 0.2 6 -1
#> 3: 3 0.2240799 100 0.8 0.8 4 0.1 2 -1
#> 4: 4 0.1194221 75 1.0 0.8 4 0.1 10 -1
#> 5: 5 0.1281037 32 1.0 0.6 6 0.2 18 -1
#> 6: 6 0.1245721 60 1.0 1.0 8 0.1 14 -1
#> verbose objective metric num_class
#> <int> <char> <char> <char>
#> 1: -1 multiclass multi_logloss 3
#> 2: -1 multiclass multi_logloss 3
#> 3: -1 multiclass multi_logloss 3
#> 4: -1 multiclass multi_logloss 3
#> 5: -1 multiclass multi_logloss 3
#> 6: -1 multiclass multi_logloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
# append the optimized setting from above with the newly created weights
validator$learner_args <- c(
tuner$results$best.setting[-1],
list("case_weights" = y_weights)
)
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> <char> <num> <num> <num> <num> <num> <num> <int> <int> <int>
#> 1: Fold1 0.9635665 0.8 0.6 8 0.1 14 66 -1 -1
#> 2: Fold2 0.9551452 0.8 0.6 8 0.1 14 66 -1 -1
#> 3: Fold3 0.9521232 0.8 0.6 8 0.1 14 66 -1 -1
#> objective metric num_class
#> <char> <char> <char>
#> 1: multiclass multi_logloss 3
#> 2: multiclass multi_logloss 3
#> 3: multiclass multi_logloss 3
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.