Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
library(mllrnrs)
## -----------------------------------------------------------------------------
library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[1:13]
target_col <- "medv"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.lgb.nrounds" = 100L)
options("mlexperiments.optim.lgb.early_stopping_rounds" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- dataset[data_split$train, get(target_col)]
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- dataset[data_split$test, get(target_col)]
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(
max_depth = -1L,
verbose = -1L,
objective = "regression",
metric = "l2"
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- metric("rmsle")
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
bagging_fraction = seq(0.6, 1, .2),
feature_fraction = seq(0.6, 1, .2),
min_data_in_leaf = seq(2, 10, 2),
learning_rate = seq(0.1, 0.2, 0.1),
num_leaves = seq(2, 20, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
bagging_fraction = c(0.2, 1),
feature_fraction = c(0.2, 1),
min_data_in_leaf = c(2L, 12L),
learning_rate = c(0.1, 0.2),
num_leaves = c(2L, 20L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score 22.450000
#> [LightGBM] [Info] Start training from score 22.655319
#> [LightGBM] [Info] Start training from score 22.592704
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves max_depth
#> 1: 1 13.59085 85 0.6 0.6 4 0.2 18 -1
#> 2: 2 13.75483 55 0.8 1.0 10 0.2 6 -1
#> 3: 3 21.08526 58 0.8 0.8 4 0.1 2 -1
#> 4: 4 13.31343 92 1.0 0.8 4 0.1 10 -1
#> 5: 5 13.86649 80 1.0 0.6 6 0.2 18 -1
#> 6: 6 14.58646 100 1.0 1.0 8 0.1 14 -1
#> verbose objective metric
#> 1: -1 regression l2
#> 2: -1 regression l2
#> 3: -1 regression l2
#> 4: -1 regression l2
#> 5: -1 regression l2
#> 6: -1 regression l2
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves gpUtility acqOptimum inBounds
#> 1: 0 1 0.6 0.6 4 0.2 18 NA FALSE TRUE
#> 2: 0 2 0.8 1.0 10 0.2 6 NA FALSE TRUE
#> 3: 0 3 0.8 0.8 4 0.1 2 NA FALSE TRUE
#> 4: 0 4 1.0 0.8 4 0.1 10 NA FALSE TRUE
#> 5: 0 5 1.0 0.6 6 0.2 18 NA FALSE TRUE
#> 6: 0 6 1.0 1.0 8 0.1 14 NA FALSE TRUE
#> Elapsed Score metric_optim_mean nrounds errorMessage max_depth verbose objective metric
#> 1: 1.081 -13.59085 13.59085 85 NA -1 -1 regression l2
#> 2: 1.072 -13.75483 13.75483 55 NA -1 -1 regression l2
#> 3: 1.044 -21.08526 21.08526 58 NA -1 -1 regression l2
#> 4: 1.126 -13.31343 13.31343 92 NA -1 -1 regression l2
#> 5: 0.104 -13.86649 13.86649 80 NA -1 -1 regression l2
#> 6: 0.106 -14.58646 14.58646 100 NA -1 -1 regression l2
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1 0.1572748 0.6 0.8 2 0.2 10 34 -1 -1
#> 2: Fold2 0.1770563 0.6 0.8 2 0.2 10 34 -1 -1
#> 3: Fold3 0.1439331 0.6 0.8 2 0.2 10 34 -1 -1
#> objective metric
#> 1: regression l2
#> 2: regression l2
#> 3: regression l2
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score 22.387821
#> [LightGBM] [Info] Start training from score 22.485257
#> [LightGBM] [Info] Start training from score 22.476923
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score 22.517722
#> [LightGBM] [Info] Start training from score 22.641401
#> [LightGBM] [Info] Start training from score 22.809677
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
#>
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#>
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#> [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
#>
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
#>
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> [LightGBM] [Info] Start training from score 22.496129
#> [LightGBM] [Info] Start training from score 22.728387
#> [LightGBM] [Info] Start training from score 22.553846
head(validator_results)
#> fold performance nrounds bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves max_depth verbose
#> 1: Fold1 0.1856914 99 0.8 0.8 4 0.1 2 -1 -1
#> 2: Fold2 0.1842789 37 0.8 0.6 8 0.1 14 -1 -1
#> 3: Fold3 0.1516625 17 0.6 0.6 4 0.2 18 -1 -1
#> objective metric
#> 1: regression l2
#> 2: regression l2
#> 3: regression l2
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance bagging_fraction feature_fraction min_data_in_leaf learning_rate num_leaves nrounds max_depth verbose
#> 1: Fold1 0.1972673 1.0000000 0.2000000 7 0.1000000 2 100 -1 -1
#> 2: Fold2 0.1934754 0.5029800 0.4977050 7 0.1195995 4 52 -1 -1
#> 3: Fold3 0.1391255 0.8050493 0.5902201 2 0.1458152 20 44 -1 -1
#> objective metric
#> 1: regression l2
#> 2: regression l2
#> 3: regression l2
## -----------------------------------------------------------------------------
preds_lightgbm <- mlexperiments::predictions(
object = validator,
newdata = test_x
)
## -----------------------------------------------------------------------------
perf_lightgbm <- mlexperiments::performance(
object = validator,
prediction_results = preds_lightgbm,
y_ground_truth = test_y,
type = "regression"
)
perf_lightgbm
#> model performance mse msle mae mape rmse rmsle rsq sse
#> 1: Fold1 0.1593611 16.258140 0.02539596 2.700096 0.1230206 4.032138 0.1593611 0.7945966 2520.012
#> 2: Fold2 0.1720557 12.614833 0.02960318 2.629003 0.1329465 3.551737 0.1720557 0.8406257 1955.299
#> 3: Fold3 0.1424064 9.666178 0.02027958 2.226562 0.1101779 3.109048 0.1424064 0.8778787 1498.258
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.