Nothing
## ----setup--------------------------------------------------------------------
# nolint start
library(mlexperiments)
library(mllrnrs)
## -----------------------------------------------------------------------------
library(mlbench)
data("DNA")
dataset <- DNA |>
data.table::as.data.table() |>
na.omit()
feature_cols <- colnames(dataset)[160:180]
target_col <- "Class"
## -----------------------------------------------------------------------------
seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)
## -----------------------------------------------------------------------------
data_split <- splitTools::partition(
y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[data_split$train, get(target_col)]) - 1L
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- as.integer(dataset[data_split$test, get(target_col)]) - 1L
## -----------------------------------------------------------------------------
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
## -----------------------------------------------------------------------------
# required learner arguments, not optimized
learner_args <- list(
objective = "multi:softprob",
eval_metric = "mlogloss",
num_class = 3
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(reshape = TRUE)
performance_metric <- metric("bacc")
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
subsample = seq(0.6, 1, .2),
colsample_bytree = seq(0.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = seq(0.1, 0.2, 0.1),
max_depth = seq(1, 5, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
subsample = c(0.2, 1),
colsample_bytree = c(0.2, 1),
min_child_weight = c(1L, 10L),
learning_rate = c(0.1, 0.2),
max_depth = c(1L, 10L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective
#> 1: 1 1.0107788 27 0.6 0.8 5 0.2 1 multi:softprob
#> 2: 2 0.9822161 35 1.0 0.8 5 0.1 5 multi:softprob
#> 3: 3 1.0097847 100 0.8 0.8 5 0.1 1 multi:softprob
#> 4: 4 0.9850296 20 0.6 0.8 5 0.2 5 multi:softprob
#> 5: 5 0.9807356 34 1.0 0.8 1 0.1 5 multi:softprob
#> 6: 6 0.9734746 46 0.8 0.8 5 0.1 5 multi:softprob
#> eval_metric num_class
#> 1: mlogloss 3
#> 2: mlogloss 3
#> 3: mlogloss 3
#> 4: mlogloss 3
#> 5: mlogloss 3
#> 6: mlogloss 3
## -----------------------------------------------------------------------------
tuner <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed
#> 1: 0 1 0.6 0.8 5 0.2 1 NA FALSE TRUE 1.934
#> 2: 0 2 1.0 0.8 5 0.1 5 NA FALSE TRUE 2.181
#> 3: 0 3 0.8 0.8 5 0.1 1 NA FALSE TRUE 2.060
#> 4: 0 4 0.6 0.8 5 0.2 5 NA FALSE TRUE 2.057
#> 5: 0 5 1.0 0.8 1 0.1 5 NA FALSE TRUE 1.422
#> 6: 0 6 0.8 0.8 5 0.1 5 NA FALSE TRUE 1.505
#> Score metric_optim_mean nrounds errorMessage objective eval_metric num_class
#> 1: -1.0093139 1.0093139 51 NA multi:softprob mlogloss 3
#> 2: -0.9842567 0.9842567 34 NA multi:softprob mlogloss 3
#> 3: -1.0097517 1.0097517 79 NA multi:softprob mlogloss 3
#> 4: -0.9766614 0.9766614 17 NA multi:softprob mlogloss 3
#> 5: -0.9851912 0.9851912 28 NA multi:softprob mlogloss 3
#> 6: -0.9755198 0.9755198 42 NA multi:softprob mlogloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.4685501 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 2: Fold2 0.4179775 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 3: Fold3 0.4718162 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective eval_metric
#> 1: Fold1 0.4304667 30 0.8 0.8 5 0.1 5 multi:softprob mlogloss
#> 2: Fold2 0.3907826 33 0.8 0.8 5 0.1 5 multi:softprob mlogloss
#> 3: Fold3 0.4183769 25 0.6 1.0 1 0.1 5 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.4607781 0.7285277 0.8178568 1 0.1099728 10 18 multi:softprob mlogloss
#> 2: Fold2 0.4306211 0.5578915 0.7352097 1 0.1099728 10 24 multi:softprob mlogloss
#> 3: Fold3 0.4464739 0.5001911 0.8708509 1 0.1099728 10 19 multi:softprob mlogloss
#> num_class
#> 1: 3
#> 2: 3
#> 3: 3
## -----------------------------------------------------------------------------
preds_xgboost <- mlexperiments::predictions(
object = validator,
newdata = test_x
)
## -----------------------------------------------------------------------------
perf_xgboost <- mlexperiments::performance(
object = validator,
prediction_results = preds_xgboost,
y_ground_truth = test_y
)
perf_xgboost
#> model performance
#> 1: Fold1 0.4628262
#> 2: Fold2 0.4503222
#> 3: Fold3 0.4535445
## -----------------------------------------------------------------------------
# define the target weights
y_weights <- ifelse(train_y == 1, 0.8, ifelse(train_y == 2, 1.2, 1))
head(y_weights)
#> [1] 1.2 1.2 0.0 0.8 0.8 0.0
## -----------------------------------------------------------------------------
tuner_w_weights <- mlexperiments::MLTuneParameters$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner_w_weights$parameter_grid <- parameter_grid
tuner_w_weights$learner_args <- c(
learner_args,
list(case_weights = y_weights)
)
tuner_w_weights$split_type <- "stratified"
tuner_w_weights$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner_w_weights$execute(k = 3)
#>
#> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%)
#> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [============================================================================>-------------------] 8/10 ( 80%)
#> Parameter settings [=====================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [===============================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective
#> <int> <num> <int> <num> <num> <num> <num> <num> <char>
#> 1: 1 0.9447465 27 0.6 0.8 5 0.2 1 multi:softprob
#> 2: 2 0.9222842 33 1.0 0.8 5 0.1 5 multi:softprob
#> 3: 3 0.9442046 100 0.8 0.8 5 0.1 1 multi:softprob
#> 4: 4 0.9236826 20 0.6 0.8 5 0.2 5 multi:softprob
#> 5: 5 0.9197338 35 1.0 0.8 1 0.1 5 multi:softprob
#> 6: 6 0.9147754 46 0.8 0.8 5 0.1 5 multi:softprob
#> eval_metric num_class
#> <char> <num>
#> 1: mlogloss 3
#> 2: mlogloss 3
#> 3: mlogloss 3
#> 4: mlogloss 3
#> 5: mlogloss 3
#> 6: mlogloss 3
## -----------------------------------------------------------------------------
validator <- mlexperiments::MLCrossValidation$new(
learner = mllrnrs::LearnerXgboost$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
# append the optimized setting from above with the newly created weights
validator$learner_args <- c(
tuner$results$best.setting[-1],
list("case_weights" = y_weights)
)
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
#> CV progress [========================================================================================================] 3/3 (100%)
#>
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> <char> <num> <num> <num> <num> <num> <num> <int> <char> <char>
#> 1: Fold1 0.4508447 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 2: Fold2 0.4185381 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> 3: Fold3 0.4436661 0.5356077 0.8312972 1 0.1099728 10 23 multi:softprob mlogloss
#> num_class
#> <num>
#> 1: 3
#> 2: 3
#> 3: 3
## ----include=FALSE------------------------------------------------------------
# nolint end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.