Nothing
library(mlbench)
data("BostonHousing")
dataset <- BostonHousing |>
data.table::as.data.table() |>
na.omit()
seed <- 312
feature_cols <- colnames(dataset)[1:13]
param_list_glmnet <- expand.grid(
alpha = seq(0, 1, 0.05)
)
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = feature_cols]
)
train_y <- log(dataset[, get("medv")])
options("mlexperiments.bayesian.max_init" = 10L)
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# ###########################################################################
# %% TUNING
# ###########################################################################
glmnet_bounds <- list(
alpha = c(0., 1.)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
# ###########################################################################
# %% NESTED CV
# ###########################################################################
test_that(
desc = "test nested cv, bayesian, regression - glmnet",
code = {
glmnet_optimizer <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
glmnet_optimizer$parameter_bounds <- glmnet_bounds
glmnet_optimizer$parameter_grid <- param_list_glmnet
glmnet_optimizer$split_type <- "stratified"
glmnet_optimizer$optim_args <- optim_args
glmnet_optimizer$learner_args <- list(
family = "gaussian",
type.measure = "mse",
standardize = TRUE
)
glmnet_optimizer$predict_args <- list(type = "response")
glmnet_optimizer$performance_metric <- mlexperiments::metric("rmsle")
# set data
glmnet_optimizer$set_data(
x = train_x,
y = train_y
)
cv_results <- glmnet_optimizer$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 7))
expect_true(inherits(
x = glmnet_optimizer$results,
what = "mlexCV"
))
}
)
test_that(
desc = "test nested cv, grid - glmnet",
code = {
glmnet_optimizer <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerGlmnet$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
set.seed(seed)
random_grid <- sample(seq_len(nrow(param_list_glmnet)), 3)
glmnet_optimizer$parameter_grid <- kdry::mlh_subset(
param_list_glmnet,
random_grid
)
glmnet_optimizer$split_type <- "stratified"
glmnet_optimizer$learner_args <- list(
family = "gaussian",
type.measure = "mse",
standardize = TRUE
)
glmnet_optimizer$predict_args <- list(type = "response")
glmnet_optimizer$performance_metric <- mlexperiments::metric("rmsle")
# set data
glmnet_optimizer$set_data(
x = train_x,
y = train_y
)
cv_results <- glmnet_optimizer$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 7))
expect_true(inherits(
x = glmnet_optimizer$results,
what = "mlexCV"
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.