Nothing
library(mlbench)
data("DNA")
dataset <- DNA |>
data.table::as.data.table() |>
na.omit()
seed <- 123
feature_cols <- colnames(dataset)[160:180]
param_list_lightgbm <- expand.grid(
bagging_fraction = seq(0.6, 1, .2),
feature_fraction = seq(0.6, 1, .2),
min_data_in_leaf = seq(2, 10, 2),
learning_rate = seq(0.1, 0.2, 0.1),
num_leaves = seq(2, 20, 4),
max_depth = -1L,
verbose = -1L
)
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
train_x <- model.matrix(
~ -1 + .,
dataset[, .SD, .SDcols = feature_cols]
)
train_y <- as.integer(dataset[, get("Class")]) - 1L
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.lgb.nrounds" = 100L)
options("mlexperiments.optim.lgb.early_stopping_rounds" = 10L)
fold_list <- splitTools::create_folds(
y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# ###########################################################################
# %% TUNING
# ###########################################################################
lightgbm_bounds <- list(
bagging_fraction = c(0.2, 1),
feature_fraction = c(0.2, 1),
min_data_in_leaf = c(2L, 12L),
learning_rate = c(0.1, 0.2),
num_leaves = c(2L, 20L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
# ###########################################################################
# %% NESTED CV
# ###########################################################################
test_that(
desc = "test nested cv, bayesian, multiclass - lightgbm",
code = {
lightgbm_optimizer <- mlexperiments::MLNestedCV$new(
learner = mllrnrs::LearnerLightgbm$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
lightgbm_optimizer$parameter_bounds <- lightgbm_bounds
lightgbm_optimizer$parameter_grid <- param_list_lightgbm
lightgbm_optimizer$split_type <- "stratified"
lightgbm_optimizer$optim_args <- optim_args
y_weights <- ifelse(train_y == 1, 0.8, ifelse(train_y == 2, 1.2, 1))
lightgbm_optimizer$learner_args <- list(
objective = "multiclass",
metric = "multi_logloss",
num_class = 3,
case_weights = y_weights
)
lightgbm_optimizer$predict_args <- list(reshape = TRUE)
lightgbm_optimizer$performance_metric <- mlexperiments::metric("bacc")
# set data
lightgbm_optimizer$set_data(
x = train_x,
y = train_y
)
cv_results <- lightgbm_optimizer$execute()
expect_type(cv_results, "list")
expect_equal(dim(cv_results), c(3, 13))
expect_true(inherits(
x = lightgbm_optimizer$results,
what = "mlexCV"
))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.