addRRMeasure | Compute new measures for existing ResampleResult |
Aggregation | Aggregation object. |
aggregations | Aggregation methods. |
agri.task | European Union Agricultural Workforces clustering task. |
analyzeFeatSelResult | Show and visualize the steps of feature selection. |
asROCRPrediction | Converts predictions to a format package ROCR can handle. |
batchmark | Run machine learning benchmarks as distributed experiments. |
bc.task | Wisconsin Breast Cancer classification task. |
benchmark | Benchmark experiment for multiple learners and tasks. |
BenchmarkResult | BenchmarkResult object. |
bh.task | Boston Housing regression task. |
cache_helpers | Get or delete mlr cache directory |
calculateConfusionMatrix | Confusion matrix. |
calculateROCMeasures | Calculate receiver operator measures. |
capLargeValues | Convert large/infinite numeric values in a data.frame or... |
changeData | Change Task Data |
checkLearner | Exported for internal use only. |
checkPredictLearnerOutput | Check output returned by predictLearner. |
ClassifTask | Create a classification task. |
ClusterTask | Create a cluster task. |
configureMlr | Configures the behavior of the package. |
ConfusionMatrix | Confusion matrix |
convertBMRToRankMatrix | Convert BenchmarkResult to a rank-matrix. |
convertMLBenchObjToTask | Convert a machine learning benchmark / demo object from... |
costiris.task | Iris cost-sensitive classification task. |
CostSensTask | Create a cost-sensitive classification task. |
createDummyFeatures | Generate dummy variables for factor features. |
createSpatialResamplingPlots | Create (spatial) resampling plot objects. |
crossover | Crossover. |
downsample | Downsample (subsample) a task or a data.frame. |
dropFeatures | Drop some features of task. |
estimateRelativeOverfitting | Estimate relative overfitting. |
estimateResidualVariance | Estimate the residual variance. |
extractFDABsignal | Bspline mlq features |
extractFDADTWKernel | DTW kernel features |
extractFDAFeatures | Extract features from functional data. |
extractFDAFourier | Fast Fourier transform features. |
extractFDAFPCA | Extract functional principal component analysis features. |
extractFDAMultiResFeatures | Multiresolution feature extraction. |
extractFDATsfeatures | Time-Series Feature Heuristics |
extractFDAWavelets | Discrete Wavelet transform features. |
FailureModel | Failure model. |
FeatSelControl | Create control structures for feature selection. |
FeatSelResult | Result of feature selection. |
filterFeatures | Filter features by thresholding filter values. |
friedmanPostHocTestBMR | Perform a posthoc Friedman-Nemenyi test. |
friedmanTestBMR | Perform overall Friedman test for a BenchmarkResult. |
fuelsubset.task | FuelSubset functional data regression task. |
generateCalibrationData | Generate classifier calibration data. |
generateCritDifferencesData | Generate data for critical-differences plot. |
generateFeatureImportanceData | Generate feature importance. |
generateFilterValuesData | Calculates feature filter values. |
generateHyperParsEffectData | Generate hyperparameter effect data. |
generateLearningCurveData | Generates a learning curve. |
generatePartialDependenceData | Generate partial dependence. |
generateThreshVsPerfData | Generate threshold vs. performance(s) for 2-class... |
getBMRAggrPerformances | Extract the aggregated performance values from a benchmark... |
getBMRFeatSelResults | Extract the feature selection results from a benchmark... |
getBMRFilteredFeatures | Extract the feature selection results from a benchmark... |
getBMRLearnerIds | Return learner ids used in benchmark. |
getBMRLearners | Return learners used in benchmark. |
getBMRLearnerShortNames | Return learner short.names used in benchmark. |
getBMRMeasureIds | Return measures IDs used in benchmark. |
getBMRMeasures | Return measures used in benchmark. |
getBMRModels | Extract all models from benchmark result. |
getBMRPerformances | Extract the test performance values from a benchmark result. |
getBMRPredictions | Extract the predictions from a benchmark result. |
getBMRTaskDescriptions | Extract all task descriptions from benchmark result... |
getBMRTaskDescs | Extract all task descriptions from benchmark result. |
getBMRTaskIds | Return task ids used in benchmark. |
getBMRTuneResults | Extract the tuning results from a benchmark result. |
getCaretParamSet | Get tuning parameters from a learner of the caret R-package. |
getClassWeightParam | Get the class weight parameter of a learner. |
getConfMatrix | Confusion matrix. |
getDefaultMeasure | Get default measure. |
getFailureModelDump | Return the error dump of FailureModel. |
getFailureModelMsg | Return error message of FailureModel. |
getFeatSelResult | Returns the selected feature set and optimization path after... |
getFeatureImportance | Calculates feature importance values for trained models. |
getFeatureImportanceLearner | Calculates feature importance values for a given learner. |
getFilteredFeatures | Returns the filtered features. |
getFunctionalFeatures | Get only functional features from a task or a data.frame. |
getHomogeneousEnsembleModels | Deprecated, use 'getLearnerModel' instead. |
getHyperPars | Get current parameter settings for a learner. |
getLearnerId | Get the ID of the learner. |
getLearnerModel | Get underlying R model of learner integrated into mlr. |
getLearnerNote | Get the note for the learner. |
getLearnerPackages | Get the required R packages of the learner. |
getLearnerParamSet | Get the parameter set of the learner. |
getLearnerParVals | Get the parameter values of the learner. |
getLearnerPredictType | Get the predict type of the learner. |
getLearnerShortName | Get the short name of the learner. |
getLearnerType | Get the type of the learner. |
getMlrOptions | Returns a list of mlr's options. |
getMultilabelBinaryPerformances | Retrieve binary classification measures for multilabel... |
getNestedTuneResultsOptPathDf | Get the 'opt.path's from each tuning step from the outer... |
getNestedTuneResultsX | Get the tuned hyperparameter settings from a nested tuning. |
getOOBPreds | Extracts out-of-bag predictions from trained models. |
getOOBPredsLearner | Provides out-of-bag predictions for a given model and the... |
getParamSet | Get a description of all possible parameter settings for a... |
getPredictionDump | Return the error dump of a failed Prediction. |
getPredictionProbabilities | Get probabilities for some classes. |
getPredictionResponse | Get response / truth from prediction object. |
getPredictionTaskDesc | Get summarizing task description from prediction. |
getProbabilities | Deprecated, use 'getPredictionProbabilities' instead. |
getResamplingIndices | Get the resampling indices from a tuning or feature selection... |
getRRDump | Return the error dump of ResampleResult. |
getRRPredictionList | Get list of predictions for train and test set of each single... |
getRRPredictions | Get predictions from resample results. |
getRRTaskDesc | Get task description from resample results (DEPRECATED). |
getRRTaskDescription | Get task description from resample results (DEPRECATED). |
getStackedBaseLearnerPredictions | Returns the predictions for each base learner. |
getTaskClassLevels | Get the class levels for classification and multilabel tasks. |
getTaskCosts | Extract costs in task. |
getTaskData | Extract data in task. |
getTaskDesc | Get a summarizing task description. |
getTaskDescription | Deprecated, use getTaskDesc instead. |
getTaskFeatureNames | Get feature names of task. |
getTaskFormula | Get formula of a task. |
getTaskId | Get the id of the task. |
getTaskNFeats | Get number of features in task. |
getTaskSize | Get number of observations in task. |
getTaskTargetNames | Get the name(s) of the target column(s). |
getTaskTargets | Get target data of task. |
getTaskType | Get the type of the task. |
getTuneResult | Returns the optimal hyperparameters and optimization path... |
getTuneResultOptPath | Get the optimization path of a tuning result. |
gunpoint.task | Gunpoint functional data classification task. |
hasFunctionalFeatures | Check whether the object contains functional features. |
hasProperties | Deprecated, use 'hasLearnerProperties' instead. |
helpLearner | Access help page of learner functions. |
helpLearnerParam | Get specific help for a learner's parameters. |
imputations | Built-in imputation methods. |
impute | Impute and re-impute data |
iris.task | Iris classification task. |
isFailureModel | Is the model a FailureModel? |
joinClassLevels | Join some class existing levels to new, larger class levels... |
learnerArgsToControl | Convert arguments to control structure. |
LearnerProperties | Query properties of learners. |
learners | List of supported learning algorithms. |
listFilterEnsembleMethods | List ensemble filter methods. |
listFilterMethods | List filter methods. |
listLearnerProperties | List the supported learner properties |
listLearners | Find matching learning algorithms. |
listMeasureProperties | List the supported measure properties. |
listMeasures | Find matching measures. |
listTaskTypes | List the supported task types in mlr |
lung.task | NCCTG Lung Cancer survival task. |
makeAggregation | Specify your own aggregation of measures. |
makeBaggingWrapper | Fuse learner with the bagging technique. |
makeBaseWrapper | Exported for internal use only. |
makeChainModel | Only exported for internal use. |
makeClassificationViaRegressionWrapper | Classification via regression wrapper. |
makeConstantClassWrapper | Wraps a classification learner to support problems where the... |
makeCostMeasure | Creates a measure for non-standard misclassification costs. |
makeCostSensClassifWrapper | Wraps a classification learner for use in cost-sensitive... |
makeCostSensRegrWrapper | Wraps a regression learner for use in cost-sensitive... |
makeCostSensWeightedPairsWrapper | Wraps a classifier for cost-sensitive learning to produce a... |
makeCustomResampledMeasure | Construct your own resampled performance measure. |
makeDownsampleWrapper | Fuse learner with simple downsampling (subsampling). |
makeDummyFeaturesWrapper | Fuse learner with dummy feature creator. |
makeExtractFDAFeatMethod | Constructor for FDA feature extraction methods. |
makeExtractFDAFeatsWrapper | Fuse learner with an extractFDAFeatures method. |
makeFeatSelWrapper | Fuse learner with feature selection. |
makeFilter | Create a feature filter. |
makeFilterEnsemble | Create an ensemble feature filter. |
makeFilterWrapper | Fuse learner with a feature filter method. |
makeFixedHoldoutInstance | Generate a fixed holdout instance for resampling. |
makeFunctionalData | Create a data.frame containing functional features from a... |
makeImputeMethod | Create a custom imputation method. |
makeImputeWrapper | Fuse learner with an imputation method. |
makeLearner | Create learner object. |
makeLearners | Create multiple learners at once. |
makeMeasure | Construct performance measure. |
makeModelMultiplexer | Create model multiplexer for model selection to tune over... |
makeModelMultiplexerParamSet | Creates a parameter set for model multiplexer tuning. |
makeMulticlassWrapper | Fuse learner with multiclass method. |
makeMultilabelBinaryRelevanceWrapper | Use binary relevance method to create a multilabel learner. |
makeMultilabelClassifierChainsWrapper | Use classifier chains method (CC) to create a multilabel... |
makeMultilabelDBRWrapper | Use dependent binary relevance method (DBR) to create a... |
makeMultilabelNestedStackingWrapper | Use nested stacking method to create a multilabel learner. |
makeMultilabelStackingWrapper | Use stacking method (stacked generalization) to create a... |
makeOverBaggingWrapper | Fuse learner with the bagging technique and oversampling for... |
makePreprocWrapper | Fuse learner with preprocessing. |
makePreprocWrapperCaret | Fuse learner with preprocessing. |
makeRemoveConstantFeaturesWrapper | Fuse learner with removal of constant features preprocessing. |
makeResampleDesc | Create a description object for a resampling strategy. |
makeResampleInstance | Instantiates a resampling strategy object. |
makeRLearner.classif.fdausc.glm | Classification of functional data by Generalized Linear... |
makeRLearner.classif.fdausc.kernel | Learner for kernel classification for functional data. |
makeRLearner.classif.fdausc.np | Learner for nonparametric classification for functional data. |
makeSMOTEWrapper | Fuse learner with SMOTE oversampling for imbalancy correction... |
makeStackedLearner | Create a stacked learner object. |
makeTaskDesc | Exported for internal use. |
makeTaskDescInternal | Exported for internal use. |
makeTuneControlCMAES | Create control object for hyperparameter tuning with CMAES. |
makeTuneControlDesign | Create control object for hyperparameter tuning with... |
makeTuneControlGenSA | Create control object for hyperparameter tuning with GenSA. |
makeTuneControlGrid | Create control object for hyperparameter tuning with grid... |
makeTuneControlIrace | Create control object for hyperparameter tuning with Irace. |
makeTuneControlMBO | Create control object for hyperparameter tuning with MBO. |
makeTuneControlRandom | Create control object for hyperparameter tuning with random... |
makeTuneWrapper | Fuse learner with tuning. |
makeUndersampleWrapper | Fuse learner with simple ove/underrsampling for imbalancy... |
makeWeightedClassesWrapper | Wraps a classifier for weighted fitting where each class... |
makeWrappedModel | Induced model of learner. |
MeasureProperties | Query properties of measures. |
measures | Performance measures. |
mergeBenchmarkResults | Merge different BenchmarkResult objects. |
mergeSmallFactorLevels | Merges small levels of factors into new level. |
mlrFamilies | mlr documentation families |
mlr-package | mlr: Machine Learning in R |
mtcars.task | Motor Trend Car Road Tests clustering task. |
MultilabelTask | Create a multilabel task. |
normalizeFeatures | Normalize features. |
oversample | Over- or undersample binary classification task to handle... |
parallelization | Supported parallelization methods |
performance | Measure performance of prediction. |
phoneme.task | Phoneme functional data multilabel classification task. |
pid.task | PimaIndiansDiabetes classification task. |
plotBMRBoxplots | Create box or violin plots for a BenchmarkResult. |
plotBMRRanksAsBarChart | Create a bar chart for ranks in a BenchmarkResult. |
plotBMRSummary | Plot a benchmark summary. |
plotCalibration | Plot calibration data using ggplot2. |
plotCritDifferences | Plot critical differences for a selected measure. |
plotFilterValues | Plot filter values using ggplot2. |
plotHyperParsEffect | Plot the hyperparameter effects data |
plotLearnerPrediction | Visualizes a learning algorithm on a 1D or 2D data set. |
plotLearningCurve | Plot learning curve data using ggplot2. |
plotPartialDependence | Plot a partial dependence with ggplot2. |
plotResiduals | Create residual plots for prediction objects or benchmark... |
plotROCCurves | Plots a ROC curve using ggplot2. |
plotThreshVsPerf | Plot threshold vs. performance(s) for 2-class classification... |
plotTuneMultiCritResult | Plots multi-criteria results after tuning using ggplot2. |
Prediction | Prediction object. |
predictLearner | Predict new data with an R learner. |
predict.WrappedModel | Predict new data. |
reduceBatchmarkResults | Reduce results of a batch-distributed benchmark. |
reextractFDAFeatures | Re-extract features from a data set |
RegrTask | Create a regression task. |
reimpute | Re-impute a data set |
removeConstantFeatures | Remove constant features from a data set. |
removeHyperPars | Remove hyperparameters settings of a learner. |
resample | Fit models according to a resampling strategy. |
ResamplePrediction | Prediction from resampling. |
ResampleResult | ResampleResult object. |
RLearner | Internal construction / wrapping of learner object. |
selectFeatures | Feature selection by wrapper approach. |
setAggregation | Set aggregation function of measure. |
setHyperPars | Set the hyperparameters of a learner object. |
setHyperPars2 | Only exported for internal use. |
setId | Set the id of a learner object. |
setLearnerId | Set the ID of a learner object. |
setMeasurePars | Set parameters of performance measures |
setPredictThreshold | Set the probability threshold the learner should use. |
setPredictType | Set the type of predictions the learner should return. |
setThreshold | Set threshold of prediction object. |
simplifyMeasureNames | Simplify measure names. |
smote | Synthetic Minority Oversampling Technique to handle class... |
sonar.task | Sonar classification task. |
spam.task | Spam classification task. |
spatial.task | J. Muenchow's Ecuador landslide data set |
subsetTask | Subset data in task. |
summarizeColumns | Summarize columns of data.frame or task. |
summarizeLevels | Summarizes factors of a data.frame by tabling them. |
SurvTask | Create a survival task. |
Task | Create a classification, regression, survival, cluster,... |
TaskDesc | Description object for task. |
train | Train a learning algorithm. |
trainLearner | Train an R learner. |
TuneControl | Control object for tuning |
TuneMultiCritControl | Create control structures for multi-criteria tuning. |
TuneMultiCritResult | Result of multi-criteria tuning. |
tuneParams | Hyperparameter tuning. |
tuneParamsMultiCrit | Hyperparameter tuning for multiple measures at once. |
TuneResult | Result of tuning. |
tuneThreshold | Tune prediction threshold. |
wpbc.task | Wisonsin Prognostic Breast Cancer (WPBC) survival task. |
yeast.task | Yeast multilabel classification task. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.