Nothing
#' @export
makeRLearner.regr.h2o.randomForest = function() {
makeRLearnerRegr(
cl = "regr.h2o.randomForest",
package = "h2o",
par.set = makeParamSet(
makeIntegerLearnerParam("mtries", lower = -1L, default = -1L),
makeNumericLearnerParam("sample_rate", lower = 0, upper = 1, default = 0.632),
makeLogicalLearnerParam("build_tree_one_node", default = FALSE, tunable = FALSE),
makeIntegerLearnerParam("ntrees", lower = 1L, default = 50L),
makeIntegerLearnerParam("max_depth", lower = 1L, default = 20L),
makeIntegerLearnerParam("min_rows", lower = 1L, default = 1L),
makeIntegerLearnerParam("nbins", lower = 1L, default = 20L),
makeIntegerLearnerParam("nbins_cats", lower = 1L, default = 1024L),
makeIntegerLearnerParam("seed", tunable = FALSE)
),
properties = c("numerics", "factors", "missings"),
name = "h2o.randomForest",
short.name = "h2o.rf",
callees = "h2o.randomForest"
)
}
#' @export
trainLearner.regr.h2o.randomForest = function(.learner, .task, .subset, .weights = NULL, ...) {
# check if h2o connection already exists, otherwise start one
conn.up = tryCatch(h2o::h2o.getConnection(), error = function(err) {
return(FALSE)
})
if (!inherits(conn.up, "H2OConnection")) {
h2o::h2o.init()
}
x = getTaskFeatureNames(.task)
y = getTaskTargetNames(.task)
d = getTaskData(.task, subset = .subset)
h2of = h2o::as.h2o(d)
h2o::h2o.randomForest(x = x, y = y, training_frame = h2of, ...)
}
#' @export
predictLearner.regr.h2o.randomForest = function(.learner, .model, .newdata, ...) {
m = .model$learner.model
h2of = h2o::as.h2o(.newdata)
p = h2o::h2o.predict(m, newdata = h2of, ...)
p.df = as.data.frame(p)
return(p.df$predict)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.