Nothing
#' @title Configures the behavior of the package.
#'
#' @description
#' Configuration is done by setting custom [options].
#'
#' If you do not set an option here, its current value will be kept.
#'
#' If you call this function with an empty argument list, everything is set to its defaults.
#'
#' @param show.info (`logical(1)`)\cr
#' Some methods of mlr support a `show.info` argument to enable
#' verbose output on the console. This option sets the default value for these arguments.
#' Setting the argument manually in one of these functions will overwrite the default
#' value for that specific function call.
#' Default is `TRUE`.
#' @param on.learner.error (`character(1)`)\cr
#' What should happen if an error in an underlying learning algorithm is caught:\cr
#' \dQuote{stop}: R exception is generated.\cr
#' \dQuote{warn}: A `FailureModel` will be created, which predicts only NAs and a warning will be generated.\cr
#' \dQuote{quiet}: Same as \dQuote{warn} but without the warning.\cr
#' Default is \dQuote{stop}.
#' @param on.learner.warning (`character(1)`)\cr
#' What should happen if a warning in an underlying learning algorithm is generated:\cr
#' \dQuote{warn}: The warning is generated as usual.\cr
#' \dQuote{quiet}: The warning is suppressed.\cr
#' Default is \dQuote{warn}.
#' @param on.par.without.desc (`character(1)`)\cr
#' What should happen if a parameter of a learner is set to a value, but no parameter description object exists,
#' indicating a possibly wrong name:\cr
#' \dQuote{stop}: R exception is generated.\cr
#' \dQuote{warn}: Warning, but parameter is still passed along to learner.\cr
#' \dQuote{quiet}: Same as \dQuote{warn} but without the warning.\cr
#' Default is \dQuote{stop}.
#' @param on.par.out.of.bounds (`character(1)`)\cr
#' What should happen if a parameter of a learner is set to an out of bounds value.\cr
#' \dQuote{stop}: R exception is generated.\cr
#' \dQuote{warn}: Warning, but parameter is still passed along to learner.\cr
#' \dQuote{quiet}: Same as \dQuote{warn} but without the warning.\cr
#' Default is \dQuote{stop}.
#' @param on.measure.not.applicable (`logical(1)`)\cr
#' What should happen if a measure is not applicable to a learner.\cr
#' \dQuote{stop}: R exception is generated.\cr
#' \dQuote{warn}: Warning, but value of the measure will be `NA`.\cr
#' \dQuote{quiet}: Same as \dQuote{warn} but without the warning.\cr
#' Default is \dQuote{stop}.
#' @param show.learner.output (`logical(1)`)\cr
#' Should the output of the learning algorithm during training and prediction be shown or captured and
#' suppressed?
#' Default is `TRUE`.
#' @param on.error.dump (`logical(1)`)\cr
#' Specify whether [FailureModel] models and failed predictions should contain an error dump
#' that can be used with `debugger` to inspect an error. This option is only effective if `on.learner.error`
#' is \dQuote{warn} or \dQuote{quiet}. If it is `TRUE`, the dump can be accessed using
#' [getFailureModelDump] on the [FailureModel], [getPredictionDump] on the failed prediction, and [getRRDump] on resample predictions.
#' Default is `FALSE`.
#' @template ret_inv_null
#' @family configure
#' @export
configureMlr = function(show.info, on.learner.error, on.learner.warning,
on.par.without.desc, on.par.out.of.bounds, on.measure.not.applicable,
show.learner.output, on.error.dump) {
defaults = list(
show.info = TRUE,
on.learner.error = "stop",
on.learner.warning = "warn",
on.par.without.desc = "stop",
on.par.out.of.bounds = "stop",
on.measure.not.applicable = "stop",
show.learner.output = TRUE,
on.error.dump = FALSE
)
any.change = FALSE
if (!missing(show.info)) {
assertFlag(show.info)
setMlrOption("show.info", show.info)
any.change = TRUE
}
if (!missing(on.learner.error)) {
assertChoice(on.learner.error, choices = c("quiet", "warn", "stop"))
setMlrOption("on.learner.error", on.learner.error)
any.change = TRUE
}
if (!missing(on.learner.warning)) {
assertChoice(on.learner.warning, choices = c("warn", "quiet"))
setMlrOption("on.learner.warning", on.learner.warning)
any.change = TRUE
}
if (!missing(on.par.without.desc)) {
assertChoice(on.par.without.desc, choices = c("quiet", "warn", "stop"))
setMlrOption("on.par.without.desc", on.par.without.desc)
any.change = TRUE
}
if (!missing(on.par.out.of.bounds)) {
assertChoice(on.par.out.of.bounds, choices = c("quiet", "warn", "stop"))
setMlrOption("on.par.out.of.bounds", on.par.out.of.bounds)
any.change = TRUE
}
if (!missing(on.measure.not.applicable)) {
assertChoice(on.measure.not.applicable, choices = c("quiet", "warn", "stop"))
setMlrOption("on.measure.not.applicable", on.measure.not.applicable)
any.change = TRUE
}
if (!missing(show.learner.output)) {
assertFlag(show.learner.output)
setMlrOption("show.learner.output", show.learner.output)
any.change = TRUE
}
if (!missing(on.error.dump)) {
assertFlag(on.error.dump)
setMlrOption("on.error.dump", on.error.dump)
any.change = TRUE
}
# no change, set everything to defaults
# FIXME: this is a horrible mechanism! How can I get a list of all mlr options?
if (!any.change) {
Map(setMlrOption, names(defaults), defaults)
}
invisible(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.