TaskRegr: Regression Task

TaskRegrR Documentation

Regression Task

Description

This task specializes Task and TaskSupervised for regression problems. The target column is assumed to be numeric. The task_type is set to "regr".

It is recommended to use as_task_regr() for construction. Predefined tasks are stored in the dictionary mlr_tasks.

Super classes

mlr3::Task -> mlr3::TaskSupervised -> TaskRegr

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class. The function as_task_regr() provides an alternative way to construct regression tasks.

Usage
TaskRegr$new(id, backend, target, label = NA_character_, extra_args = list())
Arguments
id

(character(1))
Identifier for the new instance.

backend

(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend(). E.g., a data.frame() will be converted to a DataBackendDataTable.

target

(character(1))
Name of the target column.

label

(character(1))
Label for the new instance.

extra_args

(named list())
Named list of constructor arguments, required for converting task types via convert_task().


Method truth()

True response for specified row_ids. Format depends on the task type. Defaults to all rows with role "use".

Usage
TaskRegr$truth(rows = NULL)
Arguments
rows

(positive integer())
Vector or row indices. Always refers to the complete data set, even after filtering.

Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
TaskRegr$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other Task: Task, TaskClassif, TaskSupervised, TaskUnsupervised, mlr_tasks, mlr_tasks_boston_housing, mlr_tasks_breast_cancer, mlr_tasks_german_credit, mlr_tasks_iris, mlr_tasks_mtcars, mlr_tasks_penguins, mlr_tasks_pima, mlr_tasks_sonar, mlr_tasks_spam, mlr_tasks_wine, mlr_tasks_zoo

Examples

task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm")
task$task_type
task$formula()
task$truth()
task$data(rows = 1:3, cols = task$feature_names[1:2])

mlr3 documentation built on Oct. 18, 2024, 5:11 p.m.