mlr_measures_classif.bacc: Balanced Accuracy

mlr_measures_classif.baccR Documentation

Balanced Accuracy

Description

Measure to compare true observed labels with predicted labels in multiclass classification tasks.

Details

The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.

First, all sample weights w_i are normalized per class so that each class has the same influence:

\hat{w}_i = \frac{w_i}{\sum_{j=1}^n w_j \cdot \mathbf{1}(t_j = t_i)}.

The Balanced Accuracy is then calculated as

\frac{1}{\sum_{i=1}^n \hat{w}_i} \sum_{i=1}^n \hat{w}_i \cdot \mathbf{1}(r_i = t_i).

This definition is equivalent to acc() with class-balanced sample weights.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.bacc")
msr("classif.bacc")

Parameters

Empty ParamSet

Meta Information

  • Type: "classif"

  • Range: [0, 1]

  • Minimize: FALSE

  • Required prediction: response

Note

The score function calls mlr3measures::bacc() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.bbrier, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fn, mlr_measures_classif.fnr, mlr_measures_classif.fomr, mlr_measures_classif.fp, mlr_measures_classif.fpr, mlr_measures_classif.logloss, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mauc_mu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.prauc, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tn, mlr_measures_classif.tnr, mlr_measures_classif.tp, mlr_measures_classif.tpr

Other multiclass classification measures: mlr_measures_classif.acc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.logloss, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mauc_mu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc


mlr3 documentation built on Oct. 18, 2024, 5:11 p.m.