| mlr_measures_classif.fbeta | R Documentation |
Measure to compare true observed labels with predicted labels in binary classification tasks.
With P as precision() and R as recall(), the F-beta Score is defined as
(1 + \beta^2) \frac{P \cdot R}{(\beta^2 P) + R}.
It measures the effectiveness of retrieval with respect to a user who attaches \beta times
as much importance to recall as precision.
For \beta = 1, this measure is called "F1" score.
This measure is undefined if precision or recall is undefined, i.e. TP + FP = 0 or TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("classif.fbeta")
msr("classif.fbeta")
| Id | Type | Default | Range |
| beta | integer | - | [0, \infty) |
Type: "binary"
Range: [0, 1]
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::fbeta() from package mlr3measures.
If the measure is undefined for the input, NaN is returned.
This can be customized by setting the field na_value.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.auc,
mlr_measures_classif.bacc,
mlr_measures_classif.bbrier,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.dor,
mlr_measures_classif.fdr,
mlr_measures_classif.fn,
mlr_measures_classif.fnr,
mlr_measures_classif.fomr,
mlr_measures_classif.fp,
mlr_measures_classif.fpr,
mlr_measures_classif.logloss,
mlr_measures_classif.mauc_au1p,
mlr_measures_classif.mauc_au1u,
mlr_measures_classif.mauc_aunp,
mlr_measures_classif.mauc_aunu,
mlr_measures_classif.mauc_mu,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.sensitivity,
mlr_measures_classif.specificity,
mlr_measures_classif.tn,
mlr_measures_classif.tnr,
mlr_measures_classif.tp,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc,
mlr_measures_classif.bbrier,
mlr_measures_classif.dor,
mlr_measures_classif.fdr,
mlr_measures_classif.fn,
mlr_measures_classif.fnr,
mlr_measures_classif.fomr,
mlr_measures_classif.fp,
mlr_measures_classif.fpr,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.sensitivity,
mlr_measures_classif.specificity,
mlr_measures_classif.tn,
mlr_measures_classif.tnr,
mlr_measures_classif.tp,
mlr_measures_classif.tpr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.