| mlr_measures_classif.sensitivity | R Documentation |
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Positive Rate is defined as
\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}.
This is also know as "recall", "sensitivity", or "probability of detection".
This measure is undefined if TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
mlr_measures$get("classif.sensitivity")
msr("classif.sensitivity")
Empty ParamSet
Type: "binary"
Range: [0, 1]
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::sensitivity() from package mlr3measures.
If the measure is undefined for the input, NaN is returned.
This can be customized by setting the field na_value.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc,
mlr_measures_classif.auc,
mlr_measures_classif.bacc,
mlr_measures_classif.bbrier,
mlr_measures_classif.ce,
mlr_measures_classif.costs,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fn,
mlr_measures_classif.fnr,
mlr_measures_classif.fomr,
mlr_measures_classif.fp,
mlr_measures_classif.fpr,
mlr_measures_classif.logloss,
mlr_measures_classif.mauc_au1p,
mlr_measures_classif.mauc_au1u,
mlr_measures_classif.mauc_aunp,
mlr_measures_classif.mauc_aunu,
mlr_measures_classif.mauc_mu,
mlr_measures_classif.mbrier,
mlr_measures_classif.mcc,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.specificity,
mlr_measures_classif.tn,
mlr_measures_classif.tnr,
mlr_measures_classif.tp,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc,
mlr_measures_classif.bbrier,
mlr_measures_classif.dor,
mlr_measures_classif.fbeta,
mlr_measures_classif.fdr,
mlr_measures_classif.fn,
mlr_measures_classif.fnr,
mlr_measures_classif.fomr,
mlr_measures_classif.fp,
mlr_measures_classif.fpr,
mlr_measures_classif.npv,
mlr_measures_classif.ppv,
mlr_measures_classif.prauc,
mlr_measures_classif.precision,
mlr_measures_classif.recall,
mlr_measures_classif.specificity,
mlr_measures_classif.tn,
mlr_measures_classif.tnr,
mlr_measures_classif.tp,
mlr_measures_classif.tpr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.