mlr_measures_regr.pbias | R Documentation |
Measure to compare true observed response with predicted response in regression tasks.
The Percent Bias is defined as
\frac{1}{n} \sum_{i=1}^n w_i \frac{\left( t_i - r_i \right)}{\left| t_i \right|},
where w_i
are normalized sample weights.
Good predictions score close to 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.pbias") msr("regr.pbias")
Empty ParamSet
Type: "regr"
Range: (-\infty, \infty)
Minimize: NA
Required prediction: response
The score function calls mlr3measures::pbias()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.