mlr_measures_regr.rrse | R Documentation |
Measure to compare true observed response with predicted response in regression tasks.
The Root Relative Squared Error is defined as
\sqrt{\frac{\sum_{i=1}^n \left( t_i - r_i \right)^2}{\sum_{i=1}^n \left( t_i - \bar{t} \right)^2}},
where \bar{t} = \sum_{i=1}^n t_i
.
Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant t
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rrse") msr("regr.rrse")
Empty ParamSet
Type: "regr"
Range: [0, \infty)
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rrse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.