mlr_resamplings_cv | R Documentation |
Splits data using a folds
-folds (default: 10 folds) cross-validation.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("cv") rsmp("cv")
folds
(integer(1)
)
Number of folds.
mlr3::Resampling
-> ResamplingCV
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingCV$new()
clone()
The objects of this class are cloneable with this method.
ResamplingCV$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1162/evco_a_00069")}.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
Dictionary of Resamplings: mlr_resamplings
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
cv = rsmp("cv", folds = 3)
cv$instantiate(task)
# Individual sets:
cv$train_set(1)
cv$test_set(1)
# Disjunct sets:
intersect(cv$train_set(1), cv$test_set(1))
# Internal storage:
cv$instance # table
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.