mlr_resamplings_holdout: Holdout Resampling

mlr_resamplings_holdoutR Documentation

Holdout Resampling

Description

Splits data into a training set and a test set. Parameter ratio determines the ratio of observation going into the training set (default: 2/3).

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("holdout")
rsmp("holdout")

Parameters

  • ratio (numeric(1))
    Ratio of observations to put into the training set.

Super class

mlr3::Resampling -> ResamplingHoldout

Active bindings

iters

(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
ResamplingHoldout$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
ResamplingHoldout$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1162/evco_a_00069")}.

See Also

Other Resampling: Resampling, mlr_resamplings, mlr_resamplings_bootstrap, mlr_resamplings_custom, mlr_resamplings_custom_cv, mlr_resamplings_cv, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling

Examples

# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

# Instantiate Resampling
holdout = rsmp("holdout", ratio = 0.5)
holdout$instantiate(task)

# Individual sets:
holdout$train_set(1)
holdout$test_set(1)

# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))

# Internal storage:
holdout$instance # simple list

mlr3 documentation built on Oct. 18, 2024, 5:11 p.m.