mlr_learners_classif.fairzlrm | R Documentation |
Calls fairml::zlrm from package fairml.
Generalized fair regression model from Zafar et al., 2019 implemented via package fairml
.
The 'unfairness' parameter is set to 0.05 as a default.
The optimized fairness metric is statistical parity.
This Learner can be instantiated via the
dictionary mlr_learners or with the associated
sugar function lrn()
:
mlr_learners$get("classif.fairzlrm") lrn("classif.fairzlrm")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
unfairness | numeric | - | [0, 1] |
|
intersect | logical | TRUE | TRUE, FALSE | - |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifFairzlrm
new()
Creates a new instance of this R6 class.
LearnerClassifFairzlrm$new()
clone()
The objects of this class are cloneable with this method.
LearnerClassifFairzlrm$clone(deep = FALSE)
deep
Whether to make a deep clone.
pfistfl
BJ Z, I V, M G, KP G (2019). “Fairness Constraints: a Flexible Approach for Fair Classification.” In Journal of Machine Learning Research, 30, 1-42.
Dictionary of Learners: mlr3::mlr_learners
Other fairness_learners:
mlr_learners_classif.fairfgrrm
,
mlr_learners_regr.fairfrrm
,
mlr_learners_regr.fairnclm
,
mlr_learners_regr.fairzlm
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("classif.fairzlrm"))
print(learner)
# available parameters:
learner$param_set$ids()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.