mlr_learners_classif.fairzlrm: Classification Fair Logistic Regression With Covariance...

mlr_learners_classif.fairzlrmR Documentation

Classification Fair Logistic Regression With Covariance Constraints Learner

Description

Calls fairml::zlrm from package fairml.

Details

Generalized fair regression model from Zafar et al., 2019 implemented via package fairml. The 'unfairness' parameter is set to 0.05 as a default. The optimized fairness metric is statistical parity.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.fairzlrm")
lrn("classif.fairzlrm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml

Parameters

Id Type Default Levels Range
unfairness numeric - [0, 1]
intersect logical TRUE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifFairzlrm

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifFairzlrm$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifFairzlrm$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pfistfl

References

BJ Z, I V, M G, KP G (2019). “Fairness Constraints: a Flexible Approach for Fair Classification.” In Journal of Machine Learning Research, 30, 1-42.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_regr.fairfrrm, mlr_learners_regr.fairnclm, mlr_learners_regr.fairzlm

Examples

library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("classif.fairzlrm"))
print(learner)

# available parameters:
learner$param_set$ids()

mlr3fairness documentation built on May 31, 2023, 7:22 p.m.