mlr_learners_regr.fairfrrm | R Documentation |
If more than one pta
columns are provided, the hyperparameter intersectional
controls whether
intersections of protected groups are formed (e.g. combinations of gender and race).
Initialized to TRUE
.
If FALSE
, only the group specified by the first element of pta
is used.
Calls fairml::frrm from package fairml.
Fair ridge regression learner implemented via package fairml
.
The 'unfairness' parameter has been initialized to 0.05.
This Learner can be instantiated via the
dictionary mlr_learners or with the associated
sugar function lrn()
:
mlr_learners$get("regr.fairfrrm") lrn("regr.fairfrrm")
Task type: “regr”
Predict Types: “response”
Feature Types: “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
lambda | numeric | 0 | [0, \infty) |
|
definition | character | sp-komiyama | sp-komiyama, eo-komiyama | - |
save.auxiliary | logical | FALSE | TRUE, FALSE | - |
unfairness | numeric | - | [0, 1] |
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrFairfrrm
new()
Creates a new instance of this R6 class.
LearnerRegrFairfrrm$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrFairfrrm$clone(deep = FALSE)
deep
Whether to make a deep clone.
pfistfl
Scutari M, Panero F, Proissl M (2021). “Achieving Fairness with a Simple Ridge Penalty.” arXiv preprint arXiv:2105.13817.
Dictionary of Learners: mlr3::mlr_learners
Other fairness_learners:
mlr_learners_classif.fairfgrrm
,
mlr_learners_classif.fairzlrm
,
mlr_learners_regr.fairnclm
,
mlr_learners_regr.fairzlm
library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("regr.fairfrrm"))
print(learner)
# available parameters:
learner$param_set$ids()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.