mlr_learners_regr.fairfrrm: Regression Fair Ridge Regression Learner

mlr_learners_regr.fairfrrmR Documentation

Regression Fair Ridge Regression Learner

Description

If more than one pta columns are provided, the hyperparameter intersectional controls whether intersections of protected groups are formed (e.g. combinations of gender and race). Initialized to TRUE. If FALSE, only the group specified by the first element of pta is used.

Calls fairml::frrm from package fairml.

Details

Fair ridge regression learner implemented via package fairml. The 'unfairness' parameter has been initialized to 0.05.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.fairfrrm")
lrn("regr.fairfrrm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml

Parameters

Id Type Default Levels Range
lambda numeric 0 [0, \infty)
definition character sp-komiyama sp-komiyama, eo-komiyama -
save.auxiliary logical FALSE TRUE, FALSE -
unfairness numeric - [0, 1]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFairfrrm

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrFairfrrm$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrFairfrrm$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pfistfl

References

Scutari M, Panero F, Proissl M (2021). “Achieving Fairness with a Simple Ridge Penalty.” arXiv preprint arXiv:2105.13817.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_classif.fairzlrm, mlr_learners_regr.fairnclm, mlr_learners_regr.fairzlm

Examples

library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("regr.fairfrrm"))
print(learner)

# available parameters:
learner$param_set$ids()

mlr3fairness documentation built on May 31, 2023, 7:22 p.m.