mlr_learners_regr.fairnclm: Regression Non-convex Fair Regression Learner

mlr_learners_regr.fairnclmR Documentation

Regression Non-convex Fair Regression Learner

Description

Calls fairml::nclm from package fairml.

Details

Fair regression model based on nonconvex optimization from Komiyama et al. (2018). Implemented via package fairml. The 'unfairness' parameter is set to 0.05 as a default.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("regr.fairnclm")
lrn("regr.fairnclm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, fairml

Parameters

Id Type Default Levels Range
lambda numeric 0 [0, \infty)
save.auxiliary logical FALSE TRUE, FALSE -
covfun untyped stats::cov -
unfairness numeric - [0, 1]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFairnclm

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrFairnclm$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrFairnclm$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pfistfl

References

J K, A T, J H, H S (2018). “Nonconvex Optimization for Regression with Fairness Constraints.” In Proceedings of the 35th International Conference on Machine Learning (ICML), PMLR 80, 2737-2746.

See Also

Dictionary of Learners: mlr3::mlr_learners

Other fairness_learners: mlr_learners_classif.fairfgrrm, mlr_learners_classif.fairzlrm, mlr_learners_regr.fairfrrm, mlr_learners_regr.fairzlm

Examples

library("mlr3")
# stop example failing with warning if package not installed
learner = suppressWarnings(mlr3::lrn("regr.fairnclm"))
print(learner)

# available parameters:
learner$param_set$ids()

mlr3fairness documentation built on May 31, 2023, 7:22 p.m.