Nothing
#' @title Functional Principal Component Analysis
#' @name mlr_pipeops_fda.fpca
#'
#' @description
#' This `PipeOp` applies a functional principal component analysis (FPCA) to functional columns and then
#' extracts the principal components as features. This is done using a (truncated) weighted SVD.
#'
#' To apply this `PipeOp` to irregualr data, convert it to a regular grid first using [`PipeOpFDAInterpol`].
#'
#' For more details, see [tf::tfb_fpc()], which is called internally.
#'
#'
#' @section Parameters:
#' The parameters are the parameters inherited from [`PipeOpTaskPreproc`][mlr3pipelines::PipeOpTaskPreproc],
#' as well as the following parameters:
#' * `pve` :: `numeric(1)` \cr
#' The percentage of variance explained that should be retained. Default is `0.995`.
#' * `n_components` :: `integer(1)` \cr
#' The number of principal components to extract. This parameter is initialized to `Inf`.
#'
#' @section Naming:
#' The new names generally append a `_pc_{number}` to the corresponding column name.
#' If a column was called `"x"` and the there are three principcal components, the corresponding
#' new columns will be called `"x_pc_1", "x_pc_2", "x_pc_3"`.
#'
#' @export
#' @examples
#' task = tsk("fuel")
#' po_fpca = po("fda.fpca", n_components = 3L)
#' task_fpca = po_fpca$train(list(task))[[1L]]
#' task_fpca$data()
PipeOpFPCA = R6Class("PipeOpFPCA",
inherit = PipeOpTaskPreproc,
public = list(
#' @description Initializes a new instance of this Class.
#' @param id (`character(1)`)\cr
#' Identifier of resulting object, default is `"fda.fpca"`.
#' @param param_vals (named `list`)\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings that would
#' otherwise be set during construction. Default `list()`.
initialize = function(id = "fda.fpca", param_vals = list()) {
param_set = ps(
pve = p_dbl(default = 0.995, lower = 0, upper = 1, tags = "train"),
n_components = p_int(1L, special_vals = list(Inf), tags = c("train", "required"))
)
param_set$set_values(n_components = Inf)
super$initialize(
id = id,
param_set = param_set,
param_vals = param_vals,
packages = c("mlr3fda", "mlr3pipelines", "tf"),
feature_types = "tfd_reg",
tags = "fda"
)
}
),
private = list(
.train_dt = function(dt, levels, target) {
pars = self$param_set$get_values(tags = "train")
dt = map_dtc(dt, function(x, nm) {
invoke(tf::tfb_fpc, data = x, .args = remove_named(pars, "n_components"))
})
self$state = list(fpc = dt)
dt = imap_dtc(dt, function(col, nm) {
map(col, function(x) {
pc = as.list(x[2:min(pars$n_components + 1L, length(x))])
set_names(pc, sprintf("%s_pc_%d", nm, seq_along(pc)))
})
})
unnest(dt, names(dt))
},
.predict_dt = function(dt, levels) {
pars = self$param_set$get_values()
dt = imap_dtc(dt, function(col, nm) {
fpc = invoke(
tf::tf_rebase,
object = col,
basis_from = self$state$fpc[[nm]],
arg = tf::tf_arg(col)
)
map(fpc, function(x) {
pc = as.list(x[2:min(pars$n_components + 1L, length(x))])
set_names(pc, sprintf("%s_pc_%d", nm, seq_along(pc)))
})
})
unnest(dt, names(dt))
}
)
)
#' @include zzz.R
register_po("fda.fpca", PipeOpFPCA)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.