mlr_acqfunctions_eips | R Documentation |
Expected Improvement per Second.
It is assumed that calculations are performed on an bbotk::OptimInstanceBatchSingleCrit.
Additionally to target values of the codomain that should be minimized or maximized, the
bbotk::Objective of the bbotk::OptimInstanceBatchSingleCrit should return time values.
The column names of the target variable and time variable must be passed as cols_y
in the
order (target, time)
when constructing the SurrogateLearnerCollection that is being used as a
surrogate.
This AcqFunction can be instantiated via the dictionary
mlr_acqfunctions or with the associated sugar function acqf()
:
mlr_acqfunctions$get("eips") acqf("eips")
bbotk::Objective
-> mlr3mbo::AcqFunction
-> AcqFunctionEIPS
y_best
(numeric(1)
)
Best objective function value observed so far.
In the case of maximization, this already includes the necessary change of sign.
col_y
(character(1)
).
col_time
(character(1)
).
new()
Creates a new instance of this R6 class.
AcqFunctionEIPS$new(surrogate = NULL)
surrogate
(NULL
| SurrogateLearnerCollection).
update()
Update the acquisition function and set y_best
.
AcqFunctionEIPS$update()
clone()
The objects of this class are cloneable with this method.
AcqFunctionEIPS$clone(deep = FALSE)
deep
Whether to make a deep clone.
Snoek, Jasper, Larochelle, Hugo, Adams, P R (2012). “Practical Bayesian Optimization of Machine Learning Algorithms.” In Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds.), Advances in Neural Information Processing Systems, volume 25, 2951–2959.
Other Acquisition Function:
AcqFunction
,
mlr_acqfunctions
,
mlr_acqfunctions_aei
,
mlr_acqfunctions_cb
,
mlr_acqfunctions_ehvi
,
mlr_acqfunctions_ehvigh
,
mlr_acqfunctions_ei
,
mlr_acqfunctions_mean
,
mlr_acqfunctions_multi
,
mlr_acqfunctions_pi
,
mlr_acqfunctions_sd
,
mlr_acqfunctions_smsego
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)
fun = function(xs) {
list(y = xs$x ^ 2, time = abs(xs$x))
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"), time = p_dbl(tags = "time"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = default_gp()
surrogate = srlrn(list(learner, learner$clone(deep = TRUE)), archive = instance$archive)
surrogate$cols_y = c("y", "time")
acq_function = acqf("eips", surrogate = surrogate)
acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.