mlr_acqfunctions_stochastic_ei | R Documentation |
Expected Improvement with epsilon decay.
\epsilon
is updated after each update by the formula epsilon * exp(-rate * (t %% period))
where t
is the number of times the acquisition function has been updated.
While this acquisition function usually would be used within an asynchronous optimizer, e.g., OptimizerAsyncMbo, it can in principle also be used in synchronous optimizers, e.g., OptimizerMbo.
This AcqFunction can be instantiated via the dictionary
mlr_acqfunctions or with the associated sugar function acqf()
:
mlr_acqfunctions$get("stochastic_ei") acqf("stochastic_ei")
"epsilon"
(numeric(1)
)
\epsilon
value used to determine the amount of exploration.
Higher values result in the importance of improvements predicted by the posterior mean
decreasing relative to the importance of potential improvements in regions of high predictive uncertainty.
Defaults to 0.1
.
"rate"
(numeric(1)
)
Defaults to 0.05
.
"period"
(integer(1)
)
Period of the exponential decay.
Defaults to NULL
, i.e., the decay has no period.
This acquisition function always also returns its current (acq_epsilon
) and original (acq_epsilon_0
) \epsilon
.
These values will be logged into the bbotk::ArchiveBatch of the bbotk::OptimInstanceBatch of the AcqOptimizer and
therefore also in the bbotk::Archive of the actual bbotk::OptimInstance that is to be optimized.
bbotk::Objective
-> mlr3mbo::AcqFunction
-> AcqFunctionStochasticEI
y_best
(numeric(1)
)
Best objective function value observed so far.
In the case of maximization, this already includes the necessary change of sign.
new()
Creates a new instance of this R6 class.
AcqFunctionStochasticEI$new( surrogate = NULL, epsilon = 0.1, rate = 0.05, period = NULL )
surrogate
(NULL
| SurrogateLearner).
epsilon
(numeric(1)
).
rate
(numeric(1)
).
period
(NULL
| integer(1)
).
update()
Update the acquisition function.
Sets y_best
to the best observed objective function value.
Decays epsilon.
AcqFunctionStochasticEI$update()
reset()
Reset the acquisition function.
Resets the private update counter .t
used within the epsilon decay.
AcqFunctionStochasticEI$reset()
clone()
The objects of this class are cloneable with this method.
AcqFunctionStochasticEI$clone(deep = FALSE)
deep
Whether to make a deep clone.
Jones, R. D, Schonlau, Matthias, Welch, J. W (1998). “Efficient Global Optimization of Expensive Black-Box Functions.” Journal of Global optimization, 13(4), 455–492.
Other Acquisition Function:
AcqFunction
,
mlr_acqfunctions
,
mlr_acqfunctions_aei
,
mlr_acqfunctions_cb
,
mlr_acqfunctions_ehvi
,
mlr_acqfunctions_ehvigh
,
mlr_acqfunctions_ei
,
mlr_acqfunctions_ei_log
,
mlr_acqfunctions_eips
,
mlr_acqfunctions_mean
,
mlr_acqfunctions_multi
,
mlr_acqfunctions_pi
,
mlr_acqfunctions_sd
,
mlr_acqfunctions_smsego
,
mlr_acqfunctions_stochastic_cb
if (requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
library(bbotk)
library(paradox)
library(mlr3learners)
library(data.table)
fun = function(xs) {
list(y = xs$x ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceBatchSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 5))
instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
learner = default_gp()
surrogate = srlrn(learner, archive = instance$archive)
acq_function = acqf("stochastic_ei", surrogate = surrogate)
acq_function$surrogate$update()
acq_function$update()
acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.