mlr_optimizers_adbo | R Documentation |
OptimizerADBO
class that implements Asynchronous Decentralized Bayesian Optimization (ADBO).
ADBO is a variant of Asynchronous Model Based Optimization (AMBO) that uses AcqFunctionStochasticCB with exponential lambda decay.
Currently, only single-objective optimization is supported and OptimizerADBO is considered an experimental feature and API might be subject to changes.
lambda
numeric(1)
Value used for sampling the lambda for each worker from an exponential distribution.
rate
numeric(1)
Rate of the exponential decay.
period
integer(1)
Period of the exponential decay.
initial_design
data.table::data.table()
Initial design of the optimization.
If NULL
, a design of size design_size
is generated with the specified design_function
.
Default is NULL
.
design_size
integer(1)
Size of the initial design if it is to be generated.
Default is 100
.
design_function
character(1)
Sampling function to generate the initial design.
Can be random
paradox::generate_design_random, lhs
paradox::generate_design_lhs, or sobol
paradox::generate_design_sobol.
Default is sobol
.
n_workers
integer(1)
Number of parallel workers.
If NULL
, all rush workers specified via rush::rush_plan()
are used.
Default is NULL
.
bbotk::Optimizer
-> bbotk::OptimizerAsync
-> mlr3mbo::OptimizerAsyncMbo
-> OptimizerADBO
new()
Creates a new instance of this R6 class.
OptimizerADBO$new()
optimize()
Performs the optimization on an bbotk::OptimInstanceAsyncSingleCrit until termination. The single evaluations will be written into the bbotk::ArchiveAsync. The result will be written into the instance object.
OptimizerADBO$optimize(inst)
inst
(bbotk::OptimInstanceAsyncSingleCrit).
data.table::data.table()
clone()
The objects of this class are cloneable with this method.
OptimizerADBO$clone(deep = FALSE)
deep
Whether to make a deep clone.
The lambda parameter of the confidence bound acquisition function controls the trade-off between exploration and exploitation.
A large lambda value leads to more exploration, while a small lambda value leads to more exploitation.
The initial lambda value of the acquisition function used on each worker is drawn from an exponential distribution with rate 1 / lambda
.
ADBO can use periodic exponential decay to reduce lambda periodically for a given time step t
with the formula lambda * exp(-rate * (t %% period))
.
The SurrogateLearner is configured to use a random forest and the AcqOptimizer is a random search with a batch size of 1000 and a budget of 10000 evaluations.
Egelé, Romain, Guyon, Isabelle, Vishwanath, Venkatram, Balaprakash, Prasanna (2023). “Asynchronous Decentralized Bayesian Optimization for Large Scale Hyperparameter Optimization.” In 2023 IEEE 19th International Conference on e-Science (e-Science), 1–10.
if (requireNamespace("rush") &
requireNamespace("mlr3learners") &
requireNamespace("DiceKriging") &
requireNamespace("rgenoud")) {
if (redis_available()) {
library(bbotk)
library(paradox)
library(mlr3learners)
fun = function(xs) {
list(y = xs$x ^ 2)
}
domain = ps(x = p_dbl(lower = -10, upper = 10))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
instance = OptimInstanceAsyncSingleCrit$new(
objective = objective,
terminator = trm("evals", n_evals = 10))
rush::rush_plan(n_workers=2)
optimizer = opt("adbo", design_size = 4, n_workers = 2)
optimizer$optimize(instance)
} else {
message("Redis server is not available.\nPlease set up Redis prior to running the example.")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.