mlr_pipeops | R Documentation |
A simple Dictionary
storing objects of class PipeOp
.
Each PipeOp
has an associated help page, see mlr_pipeops_[id]
.
R6Class
object inheriting from mlr3misc::Dictionary
.
Fields inherited from Dictionary
, as well as:
metainf
:: environment
Environment that stores the metainf
argument of the $add()
method.
Only for internal use.
Methods inherited from Dictionary
, as well as:
add(key, value, metainf = NULL)
(character(1)
, R6ClassGenerator
, NULL
| list
)
Adds constructor value
to the dictionary with key key
, potentially
overwriting a previously stored item. If metainf
is not NULL
(the default),
it must be a list
of arguments that will be given to the value
constructor (i.e. value$new()
)
when it needs to be constructed for as.data.table
PipeOp
listing.
as.data.table(dict)
Dictionary
-> data.table::data.table
Returns a data.table
with columns key
(character
), packages
(character
),
input.num
(integer
), output.num
(integer
), input.type.train
(character
),
input.type.predict
(character
), output.type.train
(character
), output.type.predict
(character
).
Other mlr3pipelines backend related:
Graph
,
PipeOp
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_graphs
,
mlr_pipeops_updatetarget
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Other Dictionaries:
mlr_graphs
library("mlr3")
mlr_pipeops$get("learner", lrn("classif.rpart"))
# equivalent:
po("learner", learner = lrn("classif.rpart"))
# all PipeOps currently in the dictionary:
as.data.table(mlr_pipeops)[, c("key", "input.num", "output.num", "packages")]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.